Database  
				SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)  
				Mathbox for Glauco Siliprandi  
				Real intervals  
				ge0lere  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   A nonnegative extended Real number smaller than or equal to a Real
       number, is a Real number.  (Contributed by Glauco Siliprandi , 24-Dec-2020) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						ge0lere.a  
						   ⊢   φ   →   A  ∈   ℝ          
					 
					
						 
						 
						ge0lere.b  
						   ⊢   φ   →   B  ∈    0   +∞           
					 
					
						 
						 
						ge0lere.l  
						   ⊢   φ   →   B  ≤  A         
					 
				
					 
					Assertion 
					ge0lere  
					   ⊢   φ   →   B  ∈   ℝ          
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							ge0lere.a  
							    ⊢   φ   →   A  ∈   ℝ          
						 
						
							2  
							
								
							 
							ge0lere.b  
							    ⊢   φ   →   B  ∈    0   +∞           
						 
						
							3  
							
								
							 
							ge0lere.l  
							    ⊢   φ   →   B  ≤  A         
						 
						
							4  
							
								
							 
							iccssxr  
							   ⊢     0   +∞    ⊆    ℝ   *           
						 
						
							5  
							
								4  2 
							 
							sselid  
							    ⊢   φ   →   B  ∈    ℝ   *           
						 
						
							6  
							
								
							 
							pnfxr  
							   ⊢   +∞  ∈    ℝ   *           
						 
						
							7  
							
								6 
							 
							a1i  
							    ⊢   φ   →   +∞  ∈    ℝ   *           
						 
						
							8  
							
								1 
							 
							rexrd  
							    ⊢   φ   →   A  ∈    ℝ   *           
						 
						
							9  
							
								1 
							 
							ltpnfd  
							    ⊢   φ   →   A  <  +∞         
						 
						
							10  
							
								5  8  7  3  9 
							 
							xrlelttrd  
							    ⊢   φ   →   B  <  +∞         
						 
						
							11  
							
								5  7  10 
							 
							xrltned  
							    ⊢   φ   →   B  ≠  +∞         
						 
						
							12  
							
								
							 
							ge0xrre  
							    ⊢    B  ∈    0   +∞      ∧   B  ≠  +∞       →   B  ∈   ℝ          
						 
						
							13  
							
								2  11  12 
							 
							syl2anc  
							    ⊢   φ   →   B  ∈   ℝ