Metamath Proof Explorer


Theorem ge0nemnf

Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion ge0nemnf A * 0 A A −∞

Proof

Step Hyp Ref Expression
1 ge0gtmnf A * 0 A −∞ < A
2 ngtmnft A * A = −∞ ¬ −∞ < A
3 2 adantr A * 0 A A = −∞ ¬ −∞ < A
4 3 necon2abid A * 0 A −∞ < A A −∞
5 1 4 mpbid A * 0 A A −∞