Metamath Proof Explorer


Theorem ge0p1rp

Description: A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Assertion ge0p1rp A 0 A A + 1 +

Proof

Step Hyp Ref Expression
1 peano2re A A + 1
2 1 adantr A 0 A A + 1
3 0red A 0 A 0
4 simpl A 0 A A
5 simpr A 0 A 0 A
6 ltp1 A A < A + 1
7 6 adantr A 0 A A < A + 1
8 3 4 2 5 7 lelttrd A 0 A 0 < A + 1
9 elrp A + 1 + A + 1 0 < A + 1
10 2 8 9 sylanbrc A 0 A A + 1 +