Metamath Proof Explorer


Theorem ge0p1rpd

Description: A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1 φ A
ge0p1rp.2 φ 0 A
Assertion ge0p1rpd φ A + 1 +

Proof

Step Hyp Ref Expression
1 rpgecld.1 φ A
2 ge0p1rp.2 φ 0 A
3 ge0p1rp A 0 A A + 1 +
4 1 2 3 syl2anc φ A + 1 +