Metamath Proof Explorer


Theorem ge0xaddcl

Description: The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion ge0xaddcl A 0 +∞ B 0 +∞ A + 𝑒 B 0 +∞

Proof

Step Hyp Ref Expression
1 elxrge0 A 0 +∞ A * 0 A
2 elxrge0 B 0 +∞ B * 0 B
3 xaddcl A * B * A + 𝑒 B *
4 3 ad2ant2r A * 0 A B * 0 B A + 𝑒 B *
5 xaddge0 A * B * 0 A 0 B 0 A + 𝑒 B
6 5 an4s A * 0 A B * 0 B 0 A + 𝑒 B
7 elxrge0 A + 𝑒 B 0 +∞ A + 𝑒 B * 0 A + 𝑒 B
8 4 6 7 sylanbrc A * 0 A B * 0 B A + 𝑒 B 0 +∞
9 1 2 8 syl2anb A 0 +∞ B 0 +∞ A + 𝑒 B 0 +∞