Metamath Proof Explorer


Theorem ge0xrre

Description: A nonnegative extended real that is not +oo is a real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion ge0xrre A 0 +∞ A +∞ A

Proof

Step Hyp Ref Expression
1 rge0ssre 0 +∞
2 0xr 0 *
3 2 a1i A 0 +∞ A +∞ 0 *
4 pnfxr +∞ *
5 4 a1i A 0 +∞ A +∞ +∞ *
6 eliccxr A 0 +∞ A *
7 6 adantr A 0 +∞ A +∞ A *
8 2 a1i A 0 +∞ 0 *
9 4 a1i A 0 +∞ +∞ *
10 id A 0 +∞ A 0 +∞
11 iccgelb 0 * +∞ * A 0 +∞ 0 A
12 8 9 10 11 syl3anc A 0 +∞ 0 A
13 12 adantr A 0 +∞ A +∞ 0 A
14 pnfge A * A +∞
15 6 14 syl A 0 +∞ A +∞
16 15 adantr A 0 +∞ A +∞ A +∞
17 simpr A 0 +∞ A +∞ A +∞
18 7 5 16 17 xrleneltd A 0 +∞ A +∞ A < +∞
19 3 5 7 13 18 elicod A 0 +∞ A +∞ A 0 +∞
20 1 19 sselid A 0 +∞ A +∞ A