Metamath Proof Explorer


Theorem ge2nprmge4

Description: A composite integer greater than or equal to 2 is greater than or equal to 4 . (Contributed by AV, 5-Jun-2023)

Ref Expression
Assertion ge2nprmge4 X 2 X X 4

Proof

Step Hyp Ref Expression
1 eluz2b2 X 2 X 1 < X
2 4z 4
3 2 a1i X 1 < X X 4
4 nnz X X
5 4 ad2antrr X 1 < X X X
6 1z 1
7 zltp1le 1 X 1 < X 1 + 1 X
8 6 4 7 sylancr X 1 < X 1 + 1 X
9 1p1e2 1 + 1 = 2
10 9 breq1i 1 + 1 X 2 X
11 8 10 bitrdi X 1 < X 2 X
12 2re 2
13 nnre X X
14 leloe 2 X 2 X 2 < X 2 = X
15 12 13 14 sylancr X 2 X 2 < X 2 = X
16 2z 2
17 zltp1le 2 X 2 < X 2 + 1 X
18 16 4 17 sylancr X 2 < X 2 + 1 X
19 2p1e3 2 + 1 = 3
20 19 breq1i 2 + 1 X 3 X
21 18 20 bitrdi X 2 < X 3 X
22 3re 3
23 leloe 3 X 3 X 3 < X 3 = X
24 22 13 23 sylancr X 3 X 3 < X 3 = X
25 df-4 4 = 3 + 1
26 3z 3
27 zltp1le 3 X 3 < X 3 + 1 X
28 26 4 27 sylancr X 3 < X 3 + 1 X
29 28 biimpa X 3 < X 3 + 1 X
30 25 29 eqbrtrid X 3 < X 4 X
31 30 a1d X 3 < X X 4 X
32 31 ex X 3 < X X 4 X
33 neleq1 X = 3 X 3
34 33 eqcoms 3 = X X 3
35 3prm 3
36 elnelall 3 3 4 X
37 35 36 mp1i 3 = X 3 4 X
38 34 37 sylbid 3 = X X 4 X
39 38 a1i X 3 = X X 4 X
40 32 39 jaod X 3 < X 3 = X X 4 X
41 24 40 sylbid X 3 X X 4 X
42 21 41 sylbid X 2 < X X 4 X
43 neleq1 X = 2 X 2
44 43 eqcoms 2 = X X 2
45 2prm 2
46 elnelall 2 2 4 X
47 45 46 mp1i 2 = X 2 4 X
48 44 47 sylbid 2 = X X 4 X
49 48 a1i X 2 = X X 4 X
50 42 49 jaod X 2 < X 2 = X X 4 X
51 15 50 sylbid X 2 X X 4 X
52 11 51 sylbid X 1 < X X 4 X
53 52 imp X 1 < X X 4 X
54 53 imp X 1 < X X 4 X
55 3 5 54 3jca X 1 < X X 4 X 4 X
56 55 ex X 1 < X X 4 X 4 X
57 eluz2 X 4 4 X 4 X
58 56 57 syl6ibr X 1 < X X X 4
59 1 58 sylbi X 2 X X 4
60 59 imp X 2 X X 4