Metamath Proof Explorer


Theorem gen11nv

Description: Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis without distinct variables. alrimih is gen11nv without virtual deductions. (Contributed by Alan Sare, 12-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses gen11nv.1 φ x φ
gen11nv.2 φ ψ
Assertion gen11nv φ x ψ

Proof

Step Hyp Ref Expression
1 gen11nv.1 φ x φ
2 gen11nv.2 φ ψ
3 2 in1 φ ψ
4 1 3 alrimih φ x ψ
5 4 dfvd1ir φ x ψ