Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Virtual Deduction Theorems
gen21nv
Metamath Proof Explorer
Description: Virtual deduction form of alrimdh . (Contributed by Alan Sare , 31-Dec-2011) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
gen21nv.1
⊢ φ → ∀ x φ
gen21nv.2
⊢ ψ → ∀ x ψ
gen21nv.3
⊢ φ , ψ → χ
Assertion
gen21nv
⊢ φ , ψ → ∀ x χ
Proof
Step
Hyp
Ref
Expression
1
gen21nv.1
⊢ φ → ∀ x φ
2
gen21nv.2
⊢ ψ → ∀ x ψ
3
gen21nv.3
⊢ φ , ψ → χ
4
3
dfvd2i
⊢ φ → ψ → χ
5
1 2 4
alrimdh
⊢ φ → ψ → ∀ x χ
6
5
dfvd2ir
⊢ φ , ψ → ∀ x χ