Metamath Proof Explorer


Theorem gen21nv

Description: Virtual deduction form of alrimdh . (Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses gen21nv.1 φxφ
gen21nv.2 ψxψ
gen21nv.3 φ,ψχ
Assertion gen21nv φ,ψxχ

Proof

Step Hyp Ref Expression
1 gen21nv.1 φxφ
2 gen21nv.2 ψxψ
3 gen21nv.3 φ,ψχ
4 3 dfvd2i φψχ
5 1 2 4 alrimdh φψxχ
6 5 dfvd2ir φ,ψxχ