Metamath Proof Explorer


Theorem gen21nv

Description: Virtual deduction form of alrimdh . (Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses gen21nv.1 φ x φ
gen21nv.2 ψ x ψ
gen21nv.3 φ , ψ χ
Assertion gen21nv φ , ψ x χ

Proof

Step Hyp Ref Expression
1 gen21nv.1 φ x φ
2 gen21nv.2 ψ x ψ
3 gen21nv.3 φ , ψ χ
4 3 dfvd2i φ ψ χ
5 1 2 4 alrimdh φ ψ x χ
6 5 dfvd2ir φ , ψ x χ