Metamath Proof Explorer


Theorem gencbval

Description: Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996)

Ref Expression
Hypotheses gencbval.1 A V
gencbval.2 A = y φ ψ
gencbval.3 A = y χ θ
gencbval.4 θ x χ A = y
Assertion gencbval x χ φ y θ ψ

Proof

Step Hyp Ref Expression
1 gencbval.1 A V
2 gencbval.2 A = y φ ψ
3 gencbval.3 A = y χ θ
4 gencbval.4 θ x χ A = y
5 2 notbid A = y ¬ φ ¬ ψ
6 1 5 3 4 gencbvex x χ ¬ φ y θ ¬ ψ
7 exanali x χ ¬ φ ¬ x χ φ
8 exanali y θ ¬ ψ ¬ y θ ψ
9 6 7 8 3bitr3i ¬ x χ φ ¬ y θ ψ
10 9 con4bii x χ φ y θ ψ