Metamath Proof Explorer


Theorem gencbvex

Description: Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996) (Proof shortened by Andrew Salmon, 8-Jun-2011)

Ref Expression
Hypotheses gencbvex.1 A V
gencbvex.2 A = y φ ψ
gencbvex.3 A = y χ θ
gencbvex.4 θ x χ A = y
Assertion gencbvex x χ φ y θ ψ

Proof

Step Hyp Ref Expression
1 gencbvex.1 A V
2 gencbvex.2 A = y φ ψ
3 gencbvex.3 A = y χ θ
4 gencbvex.4 θ x χ A = y
5 excom x y y = A θ ψ y x y = A θ ψ
6 3 2 anbi12d A = y χ φ θ ψ
7 6 bicomd A = y θ ψ χ φ
8 7 eqcoms y = A θ ψ χ φ
9 1 8 ceqsexv y y = A θ ψ χ φ
10 9 exbii x y y = A θ ψ x χ φ
11 19.41v x y = A θ ψ x y = A θ ψ
12 simpr x y = A θ ψ θ ψ
13 eqcom A = y y = A
14 13 biimpi A = y y = A
15 14 adantl χ A = y y = A
16 15 eximi x χ A = y x y = A
17 4 16 sylbi θ x y = A
18 17 adantr θ ψ x y = A
19 18 ancri θ ψ x y = A θ ψ
20 12 19 impbii x y = A θ ψ θ ψ
21 11 20 bitri x y = A θ ψ θ ψ
22 21 exbii y x y = A θ ψ y θ ψ
23 5 10 22 3bitr3i x χ φ y θ ψ