Metamath Proof Explorer


Theorem gencl

Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996)

Ref Expression
Hypotheses gencl.1 θxχA=B
gencl.2 A=Bφψ
gencl.3 χφ
Assertion gencl θψ

Proof

Step Hyp Ref Expression
1 gencl.1 θxχA=B
2 gencl.2 A=Bφψ
3 gencl.3 χφ
4 3 2 imbitrid A=Bχψ
5 4 impcom χA=Bψ
6 5 exlimiv xχA=Bψ
7 1 6 sylbi θψ