Metamath Proof Explorer


Theorem gencl

Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996)

Ref Expression
Hypotheses gencl.1 θ x χ A = B
gencl.2 A = B φ ψ
gencl.3 χ φ
Assertion gencl θ ψ

Proof

Step Hyp Ref Expression
1 gencl.1 θ x χ A = B
2 gencl.2 A = B φ ψ
3 gencl.3 χ φ
4 3 2 syl5ib A = B χ ψ
5 4 impcom χ A = B ψ
6 5 exlimiv x χ A = B ψ
7 1 6 sylbi θ ψ