Metamath Proof Explorer


Theorem genpcl

Description: Closure of an operation on reals. (Contributed by NM, 13-Mar-1996) (Revised by Mario Carneiro, 17-Nov-2014) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 F = w 𝑷 , v 𝑷 x | y w z v x = y G z
genp.2 y 𝑸 z 𝑸 y G z 𝑸
genpcl.3 h 𝑸 f < 𝑸 g h G f < 𝑸 h G g
genpcl.4 x G y = y G x
genpcl.5 A 𝑷 g A B 𝑷 h B x 𝑸 x < 𝑸 g G h x A F B
Assertion genpcl A 𝑷 B 𝑷 A F B 𝑷

Proof

Step Hyp Ref Expression
1 genp.1 F = w 𝑷 , v 𝑷 x | y w z v x = y G z
2 genp.2 y 𝑸 z 𝑸 y G z 𝑸
3 genpcl.3 h 𝑸 f < 𝑸 g h G f < 𝑸 h G g
4 genpcl.4 x G y = y G x
5 genpcl.5 A 𝑷 g A B 𝑷 h B x 𝑸 x < 𝑸 g G h x A F B
6 1 2 genpn0 A 𝑷 B 𝑷 A F B
7 1 2 genpss A 𝑷 B 𝑷 A F B 𝑸
8 vex x V
9 vex y V
10 8 9 3 caovord z 𝑸 x < 𝑸 y z G x < 𝑸 z G y
11 1 2 10 4 genpnnp A 𝑷 B 𝑷 ¬ A F B = 𝑸
12 dfpss2 A F B 𝑸 A F B 𝑸 ¬ A F B = 𝑸
13 7 11 12 sylanbrc A 𝑷 B 𝑷 A F B 𝑸
14 1 2 5 genpcd A 𝑷 B 𝑷 f A F B x < 𝑸 f x A F B
15 14 alrimdv A 𝑷 B 𝑷 f A F B x x < 𝑸 f x A F B
16 vex z V
17 vex w V
18 16 17 3 caovord v 𝑸 z < 𝑸 w v G z < 𝑸 v G w
19 16 17 4 caovcom z G w = w G z
20 1 2 18 19 genpnmax A 𝑷 B 𝑷 f A F B x A F B f < 𝑸 x
21 15 20 jcad A 𝑷 B 𝑷 f A F B x x < 𝑸 f x A F B x A F B f < 𝑸 x
22 21 ralrimiv A 𝑷 B 𝑷 f A F B x x < 𝑸 f x A F B x A F B f < 𝑸 x
23 elnp A F B 𝑷 A F B A F B 𝑸 f A F B x x < 𝑸 f x A F B x A F B f < 𝑸 x
24 6 13 22 23 syl21anbrc A 𝑷 B 𝑷 A F B 𝑷