Metamath Proof Explorer


Theorem genpcl

Description: Closure of an operation on reals. (Contributed by NM, 13-Mar-1996) (Revised by Mario Carneiro, 17-Nov-2014) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
genp.2 y𝑸z𝑸yGz𝑸
genpcl.3 h𝑸f<𝑸ghGf<𝑸hGg
genpcl.4 xGy=yGx
genpcl.5 A𝑷gAB𝑷hBx𝑸x<𝑸gGhxAFB
Assertion genpcl A𝑷B𝑷AFB𝑷

Proof

Step Hyp Ref Expression
1 genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
2 genp.2 y𝑸z𝑸yGz𝑸
3 genpcl.3 h𝑸f<𝑸ghGf<𝑸hGg
4 genpcl.4 xGy=yGx
5 genpcl.5 A𝑷gAB𝑷hBx𝑸x<𝑸gGhxAFB
6 1 2 genpn0 A𝑷B𝑷AFB
7 1 2 genpss A𝑷B𝑷AFB𝑸
8 vex xV
9 vex yV
10 8 9 3 caovord z𝑸x<𝑸yzGx<𝑸zGy
11 1 2 10 4 genpnnp A𝑷B𝑷¬AFB=𝑸
12 dfpss2 AFB𝑸AFB𝑸¬AFB=𝑸
13 7 11 12 sylanbrc A𝑷B𝑷AFB𝑸
14 1 2 5 genpcd A𝑷B𝑷fAFBx<𝑸fxAFB
15 14 alrimdv A𝑷B𝑷fAFBxx<𝑸fxAFB
16 vex zV
17 vex wV
18 16 17 3 caovord v𝑸z<𝑸wvGz<𝑸vGw
19 16 17 4 caovcom zGw=wGz
20 1 2 18 19 genpnmax A𝑷B𝑷fAFBxAFBf<𝑸x
21 15 20 jcad A𝑷B𝑷fAFBxx<𝑸fxAFBxAFBf<𝑸x
22 21 ralrimiv A𝑷B𝑷fAFBxx<𝑸fxAFBxAFBf<𝑸x
23 elnp AFB𝑷AFBAFB𝑸fAFBxx<𝑸fxAFBxAFBf<𝑸x
24 6 13 22 23 syl21anbrc A𝑷B𝑷AFB𝑷