Metamath Proof Explorer


Theorem genpn0

Description: The result of an operation on positive reals is not empty. (Contributed by NM, 28-Feb-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 F = w 𝑷 , v 𝑷 x | y w z v x = y G z
genp.2 y 𝑸 z 𝑸 y G z 𝑸
Assertion genpn0 A 𝑷 B 𝑷 A F B

Proof

Step Hyp Ref Expression
1 genp.1 F = w 𝑷 , v 𝑷 x | y w z v x = y G z
2 genp.2 y 𝑸 z 𝑸 y G z 𝑸
3 prn0 A 𝑷 A
4 n0 A f f A
5 3 4 sylib A 𝑷 f f A
6 prn0 B 𝑷 B
7 n0 B g g B
8 6 7 sylib B 𝑷 g g B
9 5 8 anim12i A 𝑷 B 𝑷 f f A g g B
10 1 2 genpprecl A 𝑷 B 𝑷 f A g B f G g A F B
11 ne0i f G g A F B A F B
12 0pss A F B A F B
13 11 12 sylibr f G g A F B A F B
14 10 13 syl6 A 𝑷 B 𝑷 f A g B A F B
15 14 expcomd A 𝑷 B 𝑷 g B f A A F B
16 15 exlimdv A 𝑷 B 𝑷 g g B f A A F B
17 16 com23 A 𝑷 B 𝑷 f A g g B A F B
18 17 exlimdv A 𝑷 B 𝑷 f f A g g B A F B
19 18 impd A 𝑷 B 𝑷 f f A g g B A F B
20 9 19 mpd A 𝑷 B 𝑷 A F B