Metamath Proof Explorer


Theorem genpnmax

Description: An operation on positive reals has no largest member. (Contributed by NM, 10-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 F = w 𝑷 , v 𝑷 x | y w z v x = y G z
genp.2 y 𝑸 z 𝑸 y G z 𝑸
genpnmax.2 v 𝑸 z < 𝑸 w v G z < 𝑸 v G w
genpnmax.3 z G w = w G z
Assertion genpnmax A 𝑷 B 𝑷 f A F B x A F B f < 𝑸 x

Proof

Step Hyp Ref Expression
1 genp.1 F = w 𝑷 , v 𝑷 x | y w z v x = y G z
2 genp.2 y 𝑸 z 𝑸 y G z 𝑸
3 genpnmax.2 v 𝑸 z < 𝑸 w v G z < 𝑸 v G w
4 genpnmax.3 z G w = w G z
5 1 2 genpelv A 𝑷 B 𝑷 f A F B g A h B f = g G h
6 prnmax A 𝑷 g A y A g < 𝑸 y
7 6 adantr A 𝑷 g A B 𝑷 h B y A g < 𝑸 y
8 1 2 genpprecl A 𝑷 B 𝑷 y A h B y G h A F B
9 8 exp4b A 𝑷 B 𝑷 y A h B y G h A F B
10 9 com34 A 𝑷 B 𝑷 h B y A y G h A F B
11 10 imp32 A 𝑷 B 𝑷 h B y A y G h A F B
12 elprnq B 𝑷 h B h 𝑸
13 vex g V
14 vex y V
15 vex h V
16 13 14 3 15 4 caovord2 h 𝑸 g < 𝑸 y g G h < 𝑸 y G h
17 16 biimpd h 𝑸 g < 𝑸 y g G h < 𝑸 y G h
18 12 17 syl B 𝑷 h B g < 𝑸 y g G h < 𝑸 y G h
19 18 adantl A 𝑷 B 𝑷 h B g < 𝑸 y g G h < 𝑸 y G h
20 11 19 anim12d A 𝑷 B 𝑷 h B y A g < 𝑸 y y G h A F B g G h < 𝑸 y G h
21 breq2 x = y G h g G h < 𝑸 x g G h < 𝑸 y G h
22 21 rspcev y G h A F B g G h < 𝑸 y G h x A F B g G h < 𝑸 x
23 20 22 syl6 A 𝑷 B 𝑷 h B y A g < 𝑸 y x A F B g G h < 𝑸 x
24 23 adantlr A 𝑷 g A B 𝑷 h B y A g < 𝑸 y x A F B g G h < 𝑸 x
25 24 expd A 𝑷 g A B 𝑷 h B y A g < 𝑸 y x A F B g G h < 𝑸 x
26 25 rexlimdv A 𝑷 g A B 𝑷 h B y A g < 𝑸 y x A F B g G h < 𝑸 x
27 7 26 mpd A 𝑷 g A B 𝑷 h B x A F B g G h < 𝑸 x
28 27 an4s A 𝑷 B 𝑷 g A h B x A F B g G h < 𝑸 x
29 breq1 f = g G h f < 𝑸 x g G h < 𝑸 x
30 29 rexbidv f = g G h x A F B f < 𝑸 x x A F B g G h < 𝑸 x
31 28 30 syl5ibr f = g G h A 𝑷 B 𝑷 g A h B x A F B f < 𝑸 x
32 31 expdcom A 𝑷 B 𝑷 g A h B f = g G h x A F B f < 𝑸 x
33 32 rexlimdvv A 𝑷 B 𝑷 g A h B f = g G h x A F B f < 𝑸 x
34 5 33 sylbid A 𝑷 B 𝑷 f A F B x A F B f < 𝑸 x