Metamath Proof Explorer


Theorem genpprecl

Description: Pre-closure law for general operation on positive reals. (Contributed by NM, 10-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 F = w 𝑷 , v 𝑷 x | y w z v x = y G z
genp.2 y 𝑸 z 𝑸 y G z 𝑸
Assertion genpprecl A 𝑷 B 𝑷 C A D B C G D A F B

Proof

Step Hyp Ref Expression
1 genp.1 F = w 𝑷 , v 𝑷 x | y w z v x = y G z
2 genp.2 y 𝑸 z 𝑸 y G z 𝑸
3 eqid C G D = C G D
4 rspceov C A D B C G D = C G D g A h B C G D = g G h
5 3 4 mp3an3 C A D B g A h B C G D = g G h
6 1 2 genpelv A 𝑷 B 𝑷 C G D A F B g A h B C G D = g G h
7 5 6 syl5ibr A 𝑷 B 𝑷 C A D B C G D A F B