Metamath Proof Explorer


Theorem genpss

Description: The result of an operation on positive reals is a subset of the positive fractions. (Contributed by NM, 18-Nov-1995) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 F = w 𝑷 , v 𝑷 x | y w z v x = y G z
genp.2 y 𝑸 z 𝑸 y G z 𝑸
Assertion genpss A 𝑷 B 𝑷 A F B 𝑸

Proof

Step Hyp Ref Expression
1 genp.1 F = w 𝑷 , v 𝑷 x | y w z v x = y G z
2 genp.2 y 𝑸 z 𝑸 y G z 𝑸
3 1 2 genpelv A 𝑷 B 𝑷 f A F B g A h B f = g G h
4 elprnq A 𝑷 g A g 𝑸
5 4 ex A 𝑷 g A g 𝑸
6 elprnq B 𝑷 h B h 𝑸
7 6 ex B 𝑷 h B h 𝑸
8 5 7 im2anan9 A 𝑷 B 𝑷 g A h B g 𝑸 h 𝑸
9 2 caovcl g 𝑸 h 𝑸 g G h 𝑸
10 8 9 syl6 A 𝑷 B 𝑷 g A h B g G h 𝑸
11 eleq1a g G h 𝑸 f = g G h f 𝑸
12 10 11 syl6 A 𝑷 B 𝑷 g A h B f = g G h f 𝑸
13 12 rexlimdvv A 𝑷 B 𝑷 g A h B f = g G h f 𝑸
14 3 13 sylbid A 𝑷 B 𝑷 f A F B f 𝑸
15 14 ssrdv A 𝑷 B 𝑷 A F B 𝑸