| Step |
Hyp |
Ref |
Expression |
| 1 |
|
geo2lim.1 |
|
| 2 |
|
nnuz |
|
| 3 |
|
1zzd |
|
| 4 |
|
halfcn |
|
| 5 |
4
|
a1i |
|
| 6 |
|
halfre |
|
| 7 |
|
halfge0 |
|
| 8 |
|
absid |
|
| 9 |
6 7 8
|
mp2an |
|
| 10 |
|
halflt1 |
|
| 11 |
9 10
|
eqbrtri |
|
| 12 |
11
|
a1i |
|
| 13 |
5 12
|
expcnv |
|
| 14 |
|
id |
|
| 15 |
|
nnex |
|
| 16 |
15
|
mptex |
|
| 17 |
1 16
|
eqeltri |
|
| 18 |
17
|
a1i |
|
| 19 |
|
nnnn0 |
|
| 20 |
19
|
adantl |
|
| 21 |
|
oveq2 |
|
| 22 |
|
eqid |
|
| 23 |
|
ovex |
|
| 24 |
21 22 23
|
fvmpt |
|
| 25 |
20 24
|
syl |
|
| 26 |
|
2cn |
|
| 27 |
|
2ne0 |
|
| 28 |
|
nnz |
|
| 29 |
28
|
adantl |
|
| 30 |
|
exprec |
|
| 31 |
26 27 29 30
|
mp3an12i |
|
| 32 |
25 31
|
eqtrd |
|
| 33 |
|
2nn |
|
| 34 |
|
nnexpcl |
|
| 35 |
33 20 34
|
sylancr |
|
| 36 |
35
|
nnrecred |
|
| 37 |
36
|
recnd |
|
| 38 |
32 37
|
eqeltrd |
|
| 39 |
|
simpl |
|
| 40 |
35
|
nncnd |
|
| 41 |
35
|
nnne0d |
|
| 42 |
39 40 41
|
divrecd |
|
| 43 |
|
oveq2 |
|
| 44 |
43
|
oveq2d |
|
| 45 |
|
ovex |
|
| 46 |
44 1 45
|
fvmpt |
|
| 47 |
46
|
adantl |
|
| 48 |
32
|
oveq2d |
|
| 49 |
42 47 48
|
3eqtr4d |
|
| 50 |
2 3 13 14 18 38 49
|
climmulc2 |
|
| 51 |
|
mul01 |
|
| 52 |
50 51
|
breqtrd |
|
| 53 |
|
seqex |
|
| 54 |
53
|
a1i |
|
| 55 |
39 40 41
|
divcld |
|
| 56 |
47 55
|
eqeltrd |
|
| 57 |
47
|
oveq2d |
|
| 58 |
|
geo2sum |
|
| 59 |
58
|
ancoms |
|
| 60 |
|
elfznn |
|
| 61 |
60
|
adantl |
|
| 62 |
|
oveq2 |
|
| 63 |
62
|
oveq2d |
|
| 64 |
|
ovex |
|
| 65 |
63 1 64
|
fvmpt |
|
| 66 |
61 65
|
syl |
|
| 67 |
|
simpr |
|
| 68 |
67 2
|
eleqtrdi |
|
| 69 |
|
simpll |
|
| 70 |
|
nnnn0 |
|
| 71 |
|
nnexpcl |
|
| 72 |
33 70 71
|
sylancr |
|
| 73 |
61 72
|
syl |
|
| 74 |
73
|
nncnd |
|
| 75 |
73
|
nnne0d |
|
| 76 |
69 74 75
|
divcld |
|
| 77 |
66 68 76
|
fsumser |
|
| 78 |
57 59 77
|
3eqtr2rd |
|
| 79 |
2 3 52 14 54 56 78
|
climsubc2 |
|
| 80 |
|
subid1 |
|
| 81 |
79 80
|
breqtrd |
|