Metamath Proof Explorer


Theorem geo2lim

Description: The value of the infinite geometric series 2 ^ -u 1 + 2 ^ -u 2 + ... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014)

Ref Expression
Hypothesis geo2lim.1 F = k A 2 k
Assertion geo2lim A seq 1 + F A

Proof

Step Hyp Ref Expression
1 geo2lim.1 F = k A 2 k
2 nnuz = 1
3 1zzd A 1
4 halfcn 1 2
5 4 a1i A 1 2
6 halfre 1 2
7 halfge0 0 1 2
8 absid 1 2 0 1 2 1 2 = 1 2
9 6 7 8 mp2an 1 2 = 1 2
10 halflt1 1 2 < 1
11 9 10 eqbrtri 1 2 < 1
12 11 a1i A 1 2 < 1
13 5 12 expcnv A k 0 1 2 k 0
14 id A A
15 nnex V
16 15 mptex k A 2 k V
17 1 16 eqeltri F V
18 17 a1i A F V
19 nnnn0 j j 0
20 19 adantl A j j 0
21 oveq2 k = j 1 2 k = 1 2 j
22 eqid k 0 1 2 k = k 0 1 2 k
23 ovex 1 2 j V
24 21 22 23 fvmpt j 0 k 0 1 2 k j = 1 2 j
25 20 24 syl A j k 0 1 2 k j = 1 2 j
26 2cn 2
27 2ne0 2 0
28 nnz j j
29 28 adantl A j j
30 exprec 2 2 0 j 1 2 j = 1 2 j
31 26 27 29 30 mp3an12i A j 1 2 j = 1 2 j
32 25 31 eqtrd A j k 0 1 2 k j = 1 2 j
33 2nn 2
34 nnexpcl 2 j 0 2 j
35 33 20 34 sylancr A j 2 j
36 35 nnrecred A j 1 2 j
37 36 recnd A j 1 2 j
38 32 37 eqeltrd A j k 0 1 2 k j
39 simpl A j A
40 35 nncnd A j 2 j
41 35 nnne0d A j 2 j 0
42 39 40 41 divrecd A j A 2 j = A 1 2 j
43 oveq2 k = j 2 k = 2 j
44 43 oveq2d k = j A 2 k = A 2 j
45 ovex A 2 j V
46 44 1 45 fvmpt j F j = A 2 j
47 46 adantl A j F j = A 2 j
48 32 oveq2d A j A k 0 1 2 k j = A 1 2 j
49 42 47 48 3eqtr4d A j F j = A k 0 1 2 k j
50 2 3 13 14 18 38 49 climmulc2 A F A 0
51 mul01 A A 0 = 0
52 50 51 breqtrd A F 0
53 seqex seq 1 + F V
54 53 a1i A seq 1 + F V
55 39 40 41 divcld A j A 2 j
56 47 55 eqeltrd A j F j
57 47 oveq2d A j A F j = A A 2 j
58 geo2sum j A n = 1 j A 2 n = A A 2 j
59 58 ancoms A j n = 1 j A 2 n = A A 2 j
60 elfznn n 1 j n
61 60 adantl A j n 1 j n
62 oveq2 k = n 2 k = 2 n
63 62 oveq2d k = n A 2 k = A 2 n
64 ovex A 2 n V
65 63 1 64 fvmpt n F n = A 2 n
66 61 65 syl A j n 1 j F n = A 2 n
67 simpr A j j
68 67 2 eleqtrdi A j j 1
69 simpll A j n 1 j A
70 nnnn0 n n 0
71 nnexpcl 2 n 0 2 n
72 33 70 71 sylancr n 2 n
73 61 72 syl A j n 1 j 2 n
74 73 nncnd A j n 1 j 2 n
75 73 nnne0d A j n 1 j 2 n 0
76 69 74 75 divcld A j n 1 j A 2 n
77 66 68 76 fsumser A j n = 1 j A 2 n = seq 1 + F j
78 57 59 77 3eqtr2rd A j seq 1 + F j = A F j
79 2 3 52 14 54 56 78 climsubc2 A seq 1 + F A 0
80 subid1 A A 0 = A
81 79 80 breqtrd A seq 1 + F A