Step |
Hyp |
Ref |
Expression |
1 |
|
geo2lim.1 |
|
2 |
|
nnuz |
|
3 |
|
1zzd |
|
4 |
|
halfcn |
|
5 |
4
|
a1i |
|
6 |
|
halfre |
|
7 |
|
halfge0 |
|
8 |
|
absid |
|
9 |
6 7 8
|
mp2an |
|
10 |
|
halflt1 |
|
11 |
9 10
|
eqbrtri |
|
12 |
11
|
a1i |
|
13 |
5 12
|
expcnv |
|
14 |
|
id |
|
15 |
|
nnex |
|
16 |
15
|
mptex |
|
17 |
1 16
|
eqeltri |
|
18 |
17
|
a1i |
|
19 |
|
nnnn0 |
|
20 |
19
|
adantl |
|
21 |
|
oveq2 |
|
22 |
|
eqid |
|
23 |
|
ovex |
|
24 |
21 22 23
|
fvmpt |
|
25 |
20 24
|
syl |
|
26 |
|
2cn |
|
27 |
|
2ne0 |
|
28 |
|
nnz |
|
29 |
28
|
adantl |
|
30 |
|
exprec |
|
31 |
26 27 29 30
|
mp3an12i |
|
32 |
25 31
|
eqtrd |
|
33 |
|
2nn |
|
34 |
|
nnexpcl |
|
35 |
33 20 34
|
sylancr |
|
36 |
35
|
nnrecred |
|
37 |
36
|
recnd |
|
38 |
32 37
|
eqeltrd |
|
39 |
|
simpl |
|
40 |
35
|
nncnd |
|
41 |
35
|
nnne0d |
|
42 |
39 40 41
|
divrecd |
|
43 |
|
oveq2 |
|
44 |
43
|
oveq2d |
|
45 |
|
ovex |
|
46 |
44 1 45
|
fvmpt |
|
47 |
46
|
adantl |
|
48 |
32
|
oveq2d |
|
49 |
42 47 48
|
3eqtr4d |
|
50 |
2 3 13 14 18 38 49
|
climmulc2 |
|
51 |
|
mul01 |
|
52 |
50 51
|
breqtrd |
|
53 |
|
seqex |
|
54 |
53
|
a1i |
|
55 |
39 40 41
|
divcld |
|
56 |
47 55
|
eqeltrd |
|
57 |
47
|
oveq2d |
|
58 |
|
geo2sum |
|
59 |
58
|
ancoms |
|
60 |
|
elfznn |
|
61 |
60
|
adantl |
|
62 |
|
oveq2 |
|
63 |
62
|
oveq2d |
|
64 |
|
ovex |
|
65 |
63 1 64
|
fvmpt |
|
66 |
61 65
|
syl |
|
67 |
|
simpr |
|
68 |
67 2
|
eleqtrdi |
|
69 |
|
simpll |
|
70 |
|
nnnn0 |
|
71 |
|
nnexpcl |
|
72 |
33 70 71
|
sylancr |
|
73 |
61 72
|
syl |
|
74 |
73
|
nncnd |
|
75 |
73
|
nnne0d |
|
76 |
69 74 75
|
divcld |
|
77 |
66 68 76
|
fsumser |
|
78 |
57 59 77
|
3eqtr2rd |
|
79 |
2 3 52 14 54 56 78
|
climsubc2 |
|
80 |
|
subid1 |
|
81 |
79 80
|
breqtrd |
|