Step |
Hyp |
Ref |
Expression |
1 |
|
1zzd |
|
2 |
|
nnz |
|
3 |
2
|
adantr |
|
4 |
|
simplr |
|
5 |
|
2nn |
|
6 |
|
elfznn |
|
7 |
6
|
adantl |
|
8 |
7
|
nnnn0d |
|
9 |
|
nnexpcl |
|
10 |
5 8 9
|
sylancr |
|
11 |
10
|
nncnd |
|
12 |
10
|
nnne0d |
|
13 |
4 11 12
|
divcld |
|
14 |
|
oveq2 |
|
15 |
14
|
oveq2d |
|
16 |
1 1 3 13 15
|
fsumshftm |
|
17 |
|
1m1e0 |
|
18 |
17
|
oveq1i |
|
19 |
18
|
sumeq1i |
|
20 |
|
halfcn |
|
21 |
|
elfznn0 |
|
22 |
21
|
adantl |
|
23 |
|
expcl |
|
24 |
20 22 23
|
sylancr |
|
25 |
|
2cnd |
|
26 |
|
2ne0 |
|
27 |
26
|
a1i |
|
28 |
24 25 27
|
divrecd |
|
29 |
|
expp1 |
|
30 |
20 22 29
|
sylancr |
|
31 |
|
elfzelz |
|
32 |
31
|
peano2zd |
|
33 |
32
|
adantl |
|
34 |
25 27 33
|
exprecd |
|
35 |
28 30 34
|
3eqtr2rd |
|
36 |
35
|
oveq2d |
|
37 |
|
simplr |
|
38 |
|
peano2nn0 |
|
39 |
22 38
|
syl |
|
40 |
|
nnexpcl |
|
41 |
5 39 40
|
sylancr |
|
42 |
41
|
nncnd |
|
43 |
41
|
nnne0d |
|
44 |
37 42 43
|
divrecd |
|
45 |
24 37 25 27
|
div12d |
|
46 |
36 44 45
|
3eqtr4d |
|
47 |
46
|
sumeq2dv |
|
48 |
|
fzfid |
|
49 |
|
halfcl |
|
50 |
49
|
adantl |
|
51 |
48 50 24
|
fsummulc1 |
|
52 |
47 51
|
eqtr4d |
|
53 |
19 52
|
eqtrid |
|
54 |
|
2cnd |
|
55 |
26
|
a1i |
|
56 |
54 55 3
|
exprecd |
|
57 |
56
|
oveq2d |
|
58 |
|
1mhlfehlf |
|
59 |
58
|
a1i |
|
60 |
57 59
|
oveq12d |
|
61 |
|
simpr |
|
62 |
61 54 55
|
divrec2d |
|
63 |
60 62
|
oveq12d |
|
64 |
|
ax-1cn |
|
65 |
|
nnnn0 |
|
66 |
65
|
adantr |
|
67 |
|
nnexpcl |
|
68 |
5 66 67
|
sylancr |
|
69 |
68
|
nnrecred |
|
70 |
69
|
recnd |
|
71 |
|
subcl |
|
72 |
64 70 71
|
sylancr |
|
73 |
20
|
a1i |
|
74 |
|
0re |
|
75 |
|
halfgt0 |
|
76 |
74 75
|
gtneii |
|
77 |
76
|
a1i |
|
78 |
72 73 77
|
divcld |
|
79 |
78 73 61
|
mulassd |
|
80 |
72 73 77
|
divcan1d |
|
81 |
80
|
oveq1d |
|
82 |
63 79 81
|
3eqtr2d |
|
83 |
|
halfre |
|
84 |
|
halflt1 |
|
85 |
83 84
|
ltneii |
|
86 |
85
|
a1i |
|
87 |
73 86 66
|
geoser |
|
88 |
87
|
oveq1d |
|
89 |
|
mulid2 |
|
90 |
89
|
adantl |
|
91 |
90
|
eqcomd |
|
92 |
68
|
nncnd |
|
93 |
68
|
nnne0d |
|
94 |
61 92 93
|
divrec2d |
|
95 |
91 94
|
oveq12d |
|
96 |
64
|
a1i |
|
97 |
96 70 61
|
subdird |
|
98 |
95 97
|
eqtr4d |
|
99 |
82 88 98
|
3eqtr4d |
|
100 |
16 53 99
|
3eqtrd |
|