Metamath Proof Explorer


Theorem geoihalfsum

Description: Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 . This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017) (Proof shortened by AV, 9-Jul-2022)

Ref Expression
Assertion geoihalfsum k 1 2 k = 1

Proof

Step Hyp Ref Expression
1 2cn 2
2 1 a1i k 2
3 2ne0 2 0
4 3 a1i k 2 0
5 nnz k k
6 2 4 5 exprecd k 1 2 k = 1 2 k
7 6 sumeq2i k 1 2 k = k 1 2 k
8 halfcn 1 2
9 halfre 1 2
10 halfge0 0 1 2
11 absid 1 2 0 1 2 1 2 = 1 2
12 9 10 11 mp2an 1 2 = 1 2
13 halflt1 1 2 < 1
14 12 13 eqbrtri 1 2 < 1
15 geoisum1 1 2 1 2 < 1 k 1 2 k = 1 2 1 1 2
16 8 14 15 mp2an k 1 2 k = 1 2 1 1 2
17 1mhlfehlf 1 1 2 = 1 2
18 17 oveq2i 1 2 1 1 2 = 1 2 1 2
19 ax-1cn 1
20 ax-1ne0 1 0
21 19 1 20 3 divne0i 1 2 0
22 8 21 dividi 1 2 1 2 = 1
23 16 18 22 3eqtri k 1 2 k = 1
24 7 23 eqtr3i k 1 2 k = 1