Metamath Proof Explorer


Theorem geoisum

Description: The infinite sum of 1 + A ^ 1 + A ^ 2 ... is ( 1 / ( 1 - A ) ) . (Contributed by NM, 15-May-2006) (Revised by Mario Carneiro, 26-Apr-2014)

Ref Expression
Assertion geoisum A A < 1 k 0 A k = 1 1 A

Proof

Step Hyp Ref Expression
1 nn0uz 0 = 0
2 0zd A A < 1 0
3 oveq2 n = k A n = A k
4 eqid n 0 A n = n 0 A n
5 ovex A k V
6 3 4 5 fvmpt k 0 n 0 A n k = A k
7 6 adantl A A < 1 k 0 n 0 A n k = A k
8 expcl A k 0 A k
9 8 adantlr A A < 1 k 0 A k
10 simpl A A < 1 A
11 simpr A A < 1 A < 1
12 10 11 7 geolim A A < 1 seq 0 + n 0 A n 1 1 A
13 1 2 7 9 12 isumclim A A < 1 k 0 A k = 1 1 A