Metamath Proof Explorer


Theorem geoisum1

Description: The infinite sum of A ^ 1 + A ^ 2 ... is ( A / ( 1 - A ) ) . (Contributed by NM, 1-Nov-2007) (Revised by Mario Carneiro, 26-Apr-2014)

Ref Expression
Assertion geoisum1 A A < 1 k A k = A 1 A

Proof

Step Hyp Ref Expression
1 nnuz = 1
2 1zzd A A < 1 1
3 oveq2 n = k A n = A k
4 eqid n A n = n A n
5 ovex A k V
6 3 4 5 fvmpt k n A n k = A k
7 6 adantl A A < 1 k n A n k = A k
8 simpl A A < 1 A
9 nnnn0 k k 0
10 expcl A k 0 A k
11 8 9 10 syl2an A A < 1 k A k
12 simpr A A < 1 A < 1
13 1nn0 1 0
14 13 a1i A A < 1 1 0
15 elnnuz k k 1
16 15 7 sylan2br A A < 1 k 1 n A n k = A k
17 8 12 14 16 geolim2 A A < 1 seq 1 + n A n A 1 1 A
18 1 2 7 11 17 isumclim A A < 1 k A k = A 1 1 A
19 exp1 A A 1 = A
20 19 adantr A A < 1 A 1 = A
21 20 oveq1d A A < 1 A 1 1 A = A 1 A
22 18 21 eqtrd A A < 1 k A k = A 1 A