Metamath Proof Explorer


Theorem geoisum1c

Description: The infinite sum of A x. ( R ^ 1 ) + A x. ( R ^ 2 ) ... is ( A x. R ) / ( 1 - R ) . (Contributed by NM, 2-Nov-2007) (Revised by Mario Carneiro, 26-Apr-2014)

Ref Expression
Assertion geoisum1c A R R < 1 k A R k = A R 1 R

Proof

Step Hyp Ref Expression
1 simp1 A R R < 1 A
2 simp2 A R R < 1 R
3 ax-1cn 1
4 subcl 1 R 1 R
5 3 2 4 sylancr A R R < 1 1 R
6 simp3 A R R < 1 R < 1
7 1re 1
8 7 ltnri ¬ 1 < 1
9 abs1 1 = 1
10 fveq2 1 = R 1 = R
11 9 10 eqtr3id 1 = R 1 = R
12 11 breq1d 1 = R 1 < 1 R < 1
13 8 12 mtbii 1 = R ¬ R < 1
14 13 necon2ai R < 1 1 R
15 6 14 syl A R R < 1 1 R
16 subeq0 1 R 1 R = 0 1 = R
17 16 necon3bid 1 R 1 R 0 1 R
18 3 2 17 sylancr A R R < 1 1 R 0 1 R
19 15 18 mpbird A R R < 1 1 R 0
20 1 2 5 19 divassd A R R < 1 A R 1 R = A R 1 R
21 geoisum1 R R < 1 k R k = R 1 R
22 21 3adant1 A R R < 1 k R k = R 1 R
23 22 oveq2d A R R < 1 A k R k = A R 1 R
24 nnuz = 1
25 1zzd A R R < 1 1
26 oveq2 n = k R n = R k
27 eqid n R n = n R n
28 ovex R k V
29 26 27 28 fvmpt k n R n k = R k
30 29 adantl A R R < 1 k n R n k = R k
31 nnnn0 k k 0
32 expcl R k 0 R k
33 2 31 32 syl2an A R R < 1 k R k
34 1nn0 1 0
35 34 a1i A R R < 1 1 0
36 elnnuz k k 1
37 36 30 sylan2br A R R < 1 k 1 n R n k = R k
38 2 6 35 37 geolim2 A R R < 1 seq 1 + n R n R 1 1 R
39 seqex seq 1 + n R n V
40 ovex R 1 1 R V
41 39 40 breldm seq 1 + n R n R 1 1 R seq 1 + n R n dom
42 38 41 syl A R R < 1 seq 1 + n R n dom
43 24 25 30 33 42 1 isummulc2 A R R < 1 A k R k = k A R k
44 20 23 43 3eqtr2rd A R R < 1 k A R k = A R 1 R