Step |
Hyp |
Ref |
Expression |
1 |
|
geolim.1 |
|
2 |
|
geolim.2 |
|
3 |
|
geolim.3 |
|
4 |
|
nn0uz |
|
5 |
|
0zd |
|
6 |
1 2
|
expcnv |
|
7 |
|
ax-1cn |
|
8 |
|
subcl |
|
9 |
7 1 8
|
sylancr |
|
10 |
|
1re |
|
11 |
10
|
ltnri |
|
12 |
|
fveq2 |
|
13 |
|
abs1 |
|
14 |
12 13
|
eqtrdi |
|
15 |
14
|
breq1d |
|
16 |
11 15
|
mtbiri |
|
17 |
16
|
necon2ai |
|
18 |
2 17
|
syl |
|
19 |
18
|
necomd |
|
20 |
|
subeq0 |
|
21 |
7 1 20
|
sylancr |
|
22 |
21
|
necon3bid |
|
23 |
19 22
|
mpbird |
|
24 |
1 9 23
|
divcld |
|
25 |
|
nn0ex |
|
26 |
25
|
mptex |
|
27 |
26
|
a1i |
|
28 |
|
oveq2 |
|
29 |
|
eqid |
|
30 |
|
ovex |
|
31 |
28 29 30
|
fvmpt |
|
32 |
31
|
adantl |
|
33 |
|
expcl |
|
34 |
1 33
|
sylan |
|
35 |
32 34
|
eqeltrd |
|
36 |
|
expp1 |
|
37 |
1 36
|
sylan |
|
38 |
1
|
adantr |
|
39 |
34 38
|
mulcomd |
|
40 |
37 39
|
eqtrd |
|
41 |
40
|
oveq1d |
|
42 |
9
|
adantr |
|
43 |
23
|
adantr |
|
44 |
38 34 42 43
|
div23d |
|
45 |
41 44
|
eqtrd |
|
46 |
|
oveq1 |
|
47 |
46
|
oveq2d |
|
48 |
47
|
oveq1d |
|
49 |
|
eqid |
|
50 |
|
ovex |
|
51 |
48 49 50
|
fvmpt |
|
52 |
51
|
adantl |
|
53 |
32
|
oveq2d |
|
54 |
45 52 53
|
3eqtr4d |
|
55 |
4 5 6 24 27 35 54
|
climmulc2 |
|
56 |
24
|
mul01d |
|
57 |
55 56
|
breqtrd |
|
58 |
9 23
|
reccld |
|
59 |
|
seqex |
|
60 |
59
|
a1i |
|
61 |
|
peano2nn0 |
|
62 |
|
expcl |
|
63 |
1 61 62
|
syl2an |
|
64 |
63 42 43
|
divcld |
|
65 |
52 64
|
eqeltrd |
|
66 |
|
nn0cn |
|
67 |
66
|
adantl |
|
68 |
|
pncan |
|
69 |
67 7 68
|
sylancl |
|
70 |
69
|
oveq2d |
|
71 |
70
|
sumeq1d |
|
72 |
7
|
a1i |
|
73 |
72 63 42 43
|
divsubdird |
|
74 |
18
|
adantr |
|
75 |
61
|
adantl |
|
76 |
38 74 75
|
geoser |
|
77 |
52
|
oveq2d |
|
78 |
73 76 77
|
3eqtr4d |
|
79 |
|
simpll |
|
80 |
|
elfznn0 |
|
81 |
80
|
adantl |
|
82 |
79 81 3
|
syl2anc |
|
83 |
|
simpr |
|
84 |
83 4
|
eleqtrdi |
|
85 |
79 1
|
syl |
|
86 |
85 81
|
expcld |
|
87 |
82 84 86
|
fsumser |
|
88 |
71 78 87
|
3eqtr3rd |
|
89 |
4 5 57 58 60 65 88
|
climsubc2 |
|
90 |
58
|
subid1d |
|
91 |
89 90
|
breqtrd |
|