Metamath Proof Explorer


Theorem geolim3

Description: Geometric series convergence with arbitrary shift, radix, and multiplicative constant. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses geolim3.a φ A
geolim3.b1 φ B
geolim3.b2 φ B < 1
geolim3.c φ C
geolim3.f F = k A C B k A
Assertion geolim3 φ seq A + F C 1 B

Proof

Step Hyp Ref Expression
1 geolim3.a φ A
2 geolim3.b1 φ B
3 geolim3.b2 φ B < 1
4 geolim3.c φ C
5 geolim3.f F = k A C B k A
6 seqeq3 F = k A C B k A seq A + F = seq A + k A C B k A
7 5 6 ax-mp seq A + F = seq A + k A C B k A
8 nn0uz 0 = 0
9 0zd φ 0
10 oveq2 k = a B k = B a
11 eqid k 0 B k = k 0 B k
12 ovex B a V
13 10 11 12 fvmpt a 0 k 0 B k a = B a
14 13 adantl φ a 0 k 0 B k a = B a
15 2 3 14 geolim φ seq 0 + k 0 B k 1 1 B
16 expcl B a 0 B a
17 2 16 sylan φ a 0 B a
18 14 17 eqeltrd φ a 0 k 0 B k a
19 1 zcnd φ A
20 nn0cn a 0 a
21 fvex A V
22 21 mptex k A C B k A V
23 22 shftval4 A a k A C B k A shift A a = k A C B k A A + a
24 19 20 23 syl2an φ a 0 k A C B k A shift A a = k A C B k A A + a
25 uzid A A A
26 1 25 syl φ A A
27 uzaddcl A A a 0 A + a A
28 26 27 sylan φ a 0 A + a A
29 oveq1 k = A + a k A = A + a - A
30 29 oveq2d k = A + a B k A = B A + a - A
31 30 oveq2d k = A + a C B k A = C B A + a - A
32 eqid k A C B k A = k A C B k A
33 ovex C B A + a - A V
34 31 32 33 fvmpt A + a A k A C B k A A + a = C B A + a - A
35 28 34 syl φ a 0 k A C B k A A + a = C B A + a - A
36 pncan2 A a A + a - A = a
37 19 20 36 syl2an φ a 0 A + a - A = a
38 37 oveq2d φ a 0 B A + a - A = B a
39 38 14 eqtr4d φ a 0 B A + a - A = k 0 B k a
40 39 oveq2d φ a 0 C B A + a - A = C k 0 B k a
41 24 35 40 3eqtrd φ a 0 k A C B k A shift A a = C k 0 B k a
42 8 9 4 15 18 41 isermulc2 φ seq 0 + k A C B k A shift A C 1 1 B
43 19 negidd φ A + A = 0
44 43 seqeq1d φ seq A + A + k A C B k A shift A = seq 0 + k A C B k A shift A
45 ax-1cn 1
46 subcl 1 B 1 B
47 45 2 46 sylancr φ 1 B
48 abs1 1 = 1
49 48 a1i φ 1 = 1
50 2 abscld φ B
51 50 3 gtned φ 1 B
52 49 51 eqnetrd φ 1 B
53 fveq2 1 = B 1 = B
54 53 necon3i 1 B 1 B
55 52 54 syl φ 1 B
56 subeq0 1 B 1 B = 0 1 = B
57 45 2 56 sylancr φ 1 B = 0 1 = B
58 57 necon3bid φ 1 B 0 1 B
59 55 58 mpbird φ 1 B 0
60 4 47 59 divrecd φ C 1 B = C 1 1 B
61 42 44 60 3brtr4d φ seq A + A + k A C B k A shift A C 1 B
62 1 znegcld φ A
63 22 isershft A A seq A + k A C B k A C 1 B seq A + A + k A C B k A shift A C 1 B
64 1 62 63 syl2anc φ seq A + k A C B k A C 1 B seq A + A + k A C B k A shift A C 1 B
65 61 64 mpbird φ seq A + k A C B k A C 1 B
66 7 65 eqbrtrid φ seq A + F C 1 B