Step |
Hyp |
Ref |
Expression |
1 |
|
lmclim2.2 |
|
2 |
|
lmclim2.3 |
|
3 |
|
geomcau.4 |
|
4 |
|
geomcau.5 |
|
5 |
|
geomcau.6 |
|
6 |
|
geomcau.7 |
|
7 |
|
nnuz |
|
8 |
|
1zzd |
|
9 |
4
|
rpcnd |
|
10 |
4
|
rpred |
|
11 |
4
|
rpge0d |
|
12 |
10 11
|
absidd |
|
13 |
12 5
|
eqbrtrd |
|
14 |
9 13
|
expcnv |
|
15 |
|
1re |
|
16 |
|
resubcl |
|
17 |
15 10 16
|
sylancr |
|
18 |
|
posdif |
|
19 |
10 15 18
|
sylancl |
|
20 |
5 19
|
mpbid |
|
21 |
17 20
|
elrpd |
|
22 |
3 21
|
rerpdivcld |
|
23 |
22
|
recnd |
|
24 |
|
nnex |
|
25 |
24
|
mptex |
|
26 |
25
|
a1i |
|
27 |
|
nnnn0 |
|
28 |
27
|
adantl |
|
29 |
|
oveq2 |
|
30 |
|
eqid |
|
31 |
|
ovex |
|
32 |
29 30 31
|
fvmpt |
|
33 |
28 32
|
syl |
|
34 |
|
nnz |
|
35 |
|
rpexpcl |
|
36 |
4 34 35
|
syl2an |
|
37 |
36
|
rpcnd |
|
38 |
33 37
|
eqeltrd |
|
39 |
23
|
adantr |
|
40 |
37 39
|
mulcomd |
|
41 |
29
|
oveq1d |
|
42 |
|
eqid |
|
43 |
|
ovex |
|
44 |
41 42 43
|
fvmpt |
|
45 |
44
|
adantl |
|
46 |
33
|
oveq2d |
|
47 |
40 45 46
|
3eqtr4d |
|
48 |
7 8 14 23 26 38 47
|
climmulc2 |
|
49 |
23
|
mul01d |
|
50 |
48 49
|
breqtrd |
|
51 |
36
|
rpred |
|
52 |
22
|
adantr |
|
53 |
51 52
|
remulcld |
|
54 |
53
|
recnd |
|
55 |
7 8 26 45 54
|
clim0c |
|
56 |
50 55
|
mpbid |
|
57 |
|
nnz |
|
58 |
57
|
adantl |
|
59 |
|
uzid |
|
60 |
|
oveq2 |
|
61 |
60
|
fvoveq1d |
|
62 |
61
|
breq1d |
|
63 |
62
|
rspcv |
|
64 |
58 59 63
|
3syl |
|
65 |
1
|
adantr |
|
66 |
|
simpl |
|
67 |
|
ffvelrn |
|
68 |
2 66 67
|
syl2an |
|
69 |
|
eluznn |
|
70 |
|
ffvelrn |
|
71 |
2 69 70
|
syl2an |
|
72 |
|
metcl |
|
73 |
65 68 71 72
|
syl3anc |
|
74 |
|
eqid |
|
75 |
|
nnnn0 |
|
76 |
75
|
ad2antrl |
|
77 |
76
|
nn0zd |
|
78 |
|
oveq2 |
|
79 |
78
|
oveq2d |
|
80 |
|
eqid |
|
81 |
|
ovex |
|
82 |
79 80 81
|
fvmpt |
|
83 |
82
|
adantl |
|
84 |
3
|
ad2antrr |
|
85 |
10
|
ad2antrr |
|
86 |
|
eluznn0 |
|
87 |
76 86
|
sylan |
|
88 |
85 87
|
reexpcld |
|
89 |
84 88
|
remulcld |
|
90 |
89
|
recnd |
|
91 |
3
|
recnd |
|
92 |
91
|
adantr |
|
93 |
9
|
adantr |
|
94 |
13
|
adantr |
|
95 |
|
eqid |
|
96 |
|
ovex |
|
97 |
78 95 96
|
fvmpt |
|
98 |
97
|
adantl |
|
99 |
93 94 76 98
|
geolim2 |
|
100 |
88
|
recnd |
|
101 |
98 100
|
eqeltrd |
|
102 |
98
|
oveq2d |
|
103 |
83 102
|
eqtr4d |
|
104 |
74 77 92 99 101 103
|
isermulc2 |
|
105 |
4
|
adantr |
|
106 |
105 77
|
rpexpcld |
|
107 |
106
|
rpcnd |
|
108 |
17
|
recnd |
|
109 |
108
|
adantr |
|
110 |
21
|
rpne0d |
|
111 |
110
|
adantr |
|
112 |
92 107 109 111
|
div12d |
|
113 |
104 112
|
breqtrd |
|
114 |
74 77 83 90 113
|
isumclim |
|
115 |
|
seqex |
|
116 |
|
ovex |
|
117 |
115 116
|
breldm |
|
118 |
104 117
|
syl |
|
119 |
74 77 83 89 118
|
isumrecl |
|
120 |
114 119
|
eqeltrrd |
|
121 |
120
|
recnd |
|
122 |
121
|
abscld |
|
123 |
|
fzfid |
|
124 |
|
simpll |
|
125 |
|
elfzuz |
|
126 |
|
simprl |
|
127 |
|
eluznn |
|
128 |
126 127
|
sylan |
|
129 |
125 128
|
sylan2 |
|
130 |
1
|
adantr |
|
131 |
2
|
ffvelrnda |
|
132 |
|
peano2nn |
|
133 |
|
ffvelrn |
|
134 |
2 132 133
|
syl2an |
|
135 |
|
metcl |
|
136 |
130 131 134 135
|
syl3anc |
|
137 |
124 129 136
|
syl2anc |
|
138 |
123 137
|
fsumrecl |
|
139 |
|
simprr |
|
140 |
|
elfzuz |
|
141 |
|
simpll |
|
142 |
141 128 131
|
syl2anc |
|
143 |
140 142
|
sylan2 |
|
144 |
65 139 143
|
mettrifi |
|
145 |
125 89
|
sylan2 |
|
146 |
123 145
|
fsumrecl |
|
147 |
124 129 6
|
syl2anc |
|
148 |
123 137 145 147
|
fsumle |
|
149 |
|
fzssuz |
|
150 |
149
|
a1i |
|
151 |
|
0red |
|
152 |
|
nnz |
|
153 |
|
rpexpcl |
|
154 |
4 152 153
|
syl2an |
|
155 |
136 154
|
rerpdivcld |
|
156 |
3
|
adantr |
|
157 |
|
metge0 |
|
158 |
130 131 134 157
|
syl3anc |
|
159 |
136 154 158
|
divge0d |
|
160 |
136 156 154
|
ledivmul2d |
|
161 |
6 160
|
mpbird |
|
162 |
151 155 156 159 161
|
letrd |
|
163 |
141 128 162
|
syl2anc |
|
164 |
141 128 154
|
syl2anc |
|
165 |
164
|
rpge0d |
|
166 |
84 88 163 165
|
mulge0d |
|
167 |
74 77 123 150 83 89 166 118
|
isumless |
|
168 |
138 146 119 148 167
|
letrd |
|
169 |
73 138 119 144 168
|
letrd |
|
170 |
169 114
|
breqtrd |
|
171 |
120
|
leabsd |
|
172 |
73 120 122 170 171
|
letrd |
|
173 |
172
|
adantlr |
|
174 |
73
|
adantlr |
|
175 |
122
|
adantlr |
|
176 |
|
rpre |
|
177 |
176
|
ad2antlr |
|
178 |
|
lelttr |
|
179 |
174 175 177 178
|
syl3anc |
|
180 |
173 179
|
mpand |
|
181 |
180
|
anassrs |
|
182 |
181
|
ralrimdva |
|
183 |
64 182
|
syld |
|
184 |
183
|
reximdva |
|
185 |
184
|
ralimdva |
|
186 |
56 185
|
mpd |
|
187 |
|
metxmet |
|
188 |
1 187
|
syl |
|
189 |
|
eqidd |
|
190 |
|
eqidd |
|
191 |
7 188 8 189 190 2
|
iscauf |
|
192 |
186 191
|
mpbird |
|