| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmclim2.2 |
|
| 2 |
|
lmclim2.3 |
|
| 3 |
|
geomcau.4 |
|
| 4 |
|
geomcau.5 |
|
| 5 |
|
geomcau.6 |
|
| 6 |
|
geomcau.7 |
|
| 7 |
|
nnuz |
|
| 8 |
|
1zzd |
|
| 9 |
4
|
rpcnd |
|
| 10 |
4
|
rpred |
|
| 11 |
4
|
rpge0d |
|
| 12 |
10 11
|
absidd |
|
| 13 |
12 5
|
eqbrtrd |
|
| 14 |
9 13
|
expcnv |
|
| 15 |
|
1re |
|
| 16 |
|
resubcl |
|
| 17 |
15 10 16
|
sylancr |
|
| 18 |
|
posdif |
|
| 19 |
10 15 18
|
sylancl |
|
| 20 |
5 19
|
mpbid |
|
| 21 |
17 20
|
elrpd |
|
| 22 |
3 21
|
rerpdivcld |
|
| 23 |
22
|
recnd |
|
| 24 |
|
nnex |
|
| 25 |
24
|
mptex |
|
| 26 |
25
|
a1i |
|
| 27 |
|
nnnn0 |
|
| 28 |
27
|
adantl |
|
| 29 |
|
oveq2 |
|
| 30 |
|
eqid |
|
| 31 |
|
ovex |
|
| 32 |
29 30 31
|
fvmpt |
|
| 33 |
28 32
|
syl |
|
| 34 |
|
nnz |
|
| 35 |
|
rpexpcl |
|
| 36 |
4 34 35
|
syl2an |
|
| 37 |
36
|
rpcnd |
|
| 38 |
33 37
|
eqeltrd |
|
| 39 |
23
|
adantr |
|
| 40 |
37 39
|
mulcomd |
|
| 41 |
29
|
oveq1d |
|
| 42 |
|
eqid |
|
| 43 |
|
ovex |
|
| 44 |
41 42 43
|
fvmpt |
|
| 45 |
44
|
adantl |
|
| 46 |
33
|
oveq2d |
|
| 47 |
40 45 46
|
3eqtr4d |
|
| 48 |
7 8 14 23 26 38 47
|
climmulc2 |
|
| 49 |
23
|
mul01d |
|
| 50 |
48 49
|
breqtrd |
|
| 51 |
36
|
rpred |
|
| 52 |
22
|
adantr |
|
| 53 |
51 52
|
remulcld |
|
| 54 |
53
|
recnd |
|
| 55 |
7 8 26 45 54
|
clim0c |
|
| 56 |
50 55
|
mpbid |
|
| 57 |
|
nnz |
|
| 58 |
57
|
adantl |
|
| 59 |
|
uzid |
|
| 60 |
|
oveq2 |
|
| 61 |
60
|
fvoveq1d |
|
| 62 |
61
|
breq1d |
|
| 63 |
62
|
rspcv |
|
| 64 |
58 59 63
|
3syl |
|
| 65 |
1
|
adantr |
|
| 66 |
|
simpl |
|
| 67 |
|
ffvelcdm |
|
| 68 |
2 66 67
|
syl2an |
|
| 69 |
|
eluznn |
|
| 70 |
|
ffvelcdm |
|
| 71 |
2 69 70
|
syl2an |
|
| 72 |
|
metcl |
|
| 73 |
65 68 71 72
|
syl3anc |
|
| 74 |
|
eqid |
|
| 75 |
|
nnnn0 |
|
| 76 |
75
|
ad2antrl |
|
| 77 |
76
|
nn0zd |
|
| 78 |
|
oveq2 |
|
| 79 |
78
|
oveq2d |
|
| 80 |
|
eqid |
|
| 81 |
|
ovex |
|
| 82 |
79 80 81
|
fvmpt |
|
| 83 |
82
|
adantl |
|
| 84 |
3
|
ad2antrr |
|
| 85 |
10
|
ad2antrr |
|
| 86 |
|
eluznn0 |
|
| 87 |
76 86
|
sylan |
|
| 88 |
85 87
|
reexpcld |
|
| 89 |
84 88
|
remulcld |
|
| 90 |
89
|
recnd |
|
| 91 |
3
|
recnd |
|
| 92 |
91
|
adantr |
|
| 93 |
9
|
adantr |
|
| 94 |
13
|
adantr |
|
| 95 |
|
eqid |
|
| 96 |
|
ovex |
|
| 97 |
78 95 96
|
fvmpt |
|
| 98 |
97
|
adantl |
|
| 99 |
93 94 76 98
|
geolim2 |
|
| 100 |
88
|
recnd |
|
| 101 |
98 100
|
eqeltrd |
|
| 102 |
98
|
oveq2d |
|
| 103 |
83 102
|
eqtr4d |
|
| 104 |
74 77 92 99 101 103
|
isermulc2 |
|
| 105 |
4
|
adantr |
|
| 106 |
105 77
|
rpexpcld |
|
| 107 |
106
|
rpcnd |
|
| 108 |
17
|
recnd |
|
| 109 |
108
|
adantr |
|
| 110 |
21
|
rpne0d |
|
| 111 |
110
|
adantr |
|
| 112 |
92 107 109 111
|
div12d |
|
| 113 |
104 112
|
breqtrd |
|
| 114 |
74 77 83 90 113
|
isumclim |
|
| 115 |
|
seqex |
|
| 116 |
|
ovex |
|
| 117 |
115 116
|
breldm |
|
| 118 |
104 117
|
syl |
|
| 119 |
74 77 83 89 118
|
isumrecl |
|
| 120 |
114 119
|
eqeltrrd |
|
| 121 |
120
|
recnd |
|
| 122 |
121
|
abscld |
|
| 123 |
|
fzfid |
|
| 124 |
|
simpll |
|
| 125 |
|
elfzuz |
|
| 126 |
|
simprl |
|
| 127 |
|
eluznn |
|
| 128 |
126 127
|
sylan |
|
| 129 |
125 128
|
sylan2 |
|
| 130 |
1
|
adantr |
|
| 131 |
2
|
ffvelcdmda |
|
| 132 |
|
peano2nn |
|
| 133 |
|
ffvelcdm |
|
| 134 |
2 132 133
|
syl2an |
|
| 135 |
|
metcl |
|
| 136 |
130 131 134 135
|
syl3anc |
|
| 137 |
124 129 136
|
syl2anc |
|
| 138 |
123 137
|
fsumrecl |
|
| 139 |
|
simprr |
|
| 140 |
|
elfzuz |
|
| 141 |
|
simpll |
|
| 142 |
141 128 131
|
syl2anc |
|
| 143 |
140 142
|
sylan2 |
|
| 144 |
65 139 143
|
mettrifi |
|
| 145 |
125 89
|
sylan2 |
|
| 146 |
123 145
|
fsumrecl |
|
| 147 |
124 129 6
|
syl2anc |
|
| 148 |
123 137 145 147
|
fsumle |
|
| 149 |
|
fzssuz |
|
| 150 |
149
|
a1i |
|
| 151 |
|
0red |
|
| 152 |
|
nnz |
|
| 153 |
|
rpexpcl |
|
| 154 |
4 152 153
|
syl2an |
|
| 155 |
136 154
|
rerpdivcld |
|
| 156 |
3
|
adantr |
|
| 157 |
|
metge0 |
|
| 158 |
130 131 134 157
|
syl3anc |
|
| 159 |
136 154 158
|
divge0d |
|
| 160 |
136 156 154
|
ledivmul2d |
|
| 161 |
6 160
|
mpbird |
|
| 162 |
151 155 156 159 161
|
letrd |
|
| 163 |
141 128 162
|
syl2anc |
|
| 164 |
141 128 154
|
syl2anc |
|
| 165 |
164
|
rpge0d |
|
| 166 |
84 88 163 165
|
mulge0d |
|
| 167 |
74 77 123 150 83 89 166 118
|
isumless |
|
| 168 |
138 146 119 148 167
|
letrd |
|
| 169 |
73 138 119 144 168
|
letrd |
|
| 170 |
169 114
|
breqtrd |
|
| 171 |
120
|
leabsd |
|
| 172 |
73 120 122 170 171
|
letrd |
|
| 173 |
172
|
adantlr |
|
| 174 |
73
|
adantlr |
|
| 175 |
122
|
adantlr |
|
| 176 |
|
rpre |
|
| 177 |
176
|
ad2antlr |
|
| 178 |
|
lelttr |
|
| 179 |
174 175 177 178
|
syl3anc |
|
| 180 |
173 179
|
mpand |
|
| 181 |
180
|
anassrs |
|
| 182 |
181
|
ralrimdva |
|
| 183 |
64 182
|
syld |
|
| 184 |
183
|
reximdva |
|
| 185 |
184
|
ralimdva |
|
| 186 |
56 185
|
mpd |
|
| 187 |
|
metxmet |
|
| 188 |
1 187
|
syl |
|
| 189 |
|
eqidd |
|
| 190 |
|
eqidd |
|
| 191 |
7 188 8 189 190 2
|
iscauf |
|
| 192 |
186 191
|
mpbird |
|