Metamath Proof Explorer


Theorem geomcau

Description: If the distance between consecutive points in a sequence is bounded by a geometric sequence, then the sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 5-Jun-2014)

Ref Expression
Hypotheses lmclim2.2 φ D Met X
lmclim2.3 φ F : X
geomcau.4 φ A
geomcau.5 φ B +
geomcau.6 φ B < 1
geomcau.7 φ k F k D F k + 1 A B k
Assertion geomcau φ F Cau D

Proof

Step Hyp Ref Expression
1 lmclim2.2 φ D Met X
2 lmclim2.3 φ F : X
3 geomcau.4 φ A
4 geomcau.5 φ B +
5 geomcau.6 φ B < 1
6 geomcau.7 φ k F k D F k + 1 A B k
7 nnuz = 1
8 1zzd φ 1
9 4 rpcnd φ B
10 4 rpred φ B
11 4 rpge0d φ 0 B
12 10 11 absidd φ B = B
13 12 5 eqbrtrd φ B < 1
14 9 13 expcnv φ m 0 B m 0
15 1re 1
16 resubcl 1 B 1 B
17 15 10 16 sylancr φ 1 B
18 posdif B 1 B < 1 0 < 1 B
19 10 15 18 sylancl φ B < 1 0 < 1 B
20 5 19 mpbid φ 0 < 1 B
21 17 20 elrpd φ 1 B +
22 3 21 rerpdivcld φ A 1 B
23 22 recnd φ A 1 B
24 nnex V
25 24 mptex m B m A 1 B V
26 25 a1i φ m B m A 1 B V
27 nnnn0 n n 0
28 27 adantl φ n n 0
29 oveq2 m = n B m = B n
30 eqid m 0 B m = m 0 B m
31 ovex B n V
32 29 30 31 fvmpt n 0 m 0 B m n = B n
33 28 32 syl φ n m 0 B m n = B n
34 nnz n n
35 rpexpcl B + n B n +
36 4 34 35 syl2an φ n B n +
37 36 rpcnd φ n B n
38 33 37 eqeltrd φ n m 0 B m n
39 23 adantr φ n A 1 B
40 37 39 mulcomd φ n B n A 1 B = A 1 B B n
41 29 oveq1d m = n B m A 1 B = B n A 1 B
42 eqid m B m A 1 B = m B m A 1 B
43 ovex B n A 1 B V
44 41 42 43 fvmpt n m B m A 1 B n = B n A 1 B
45 44 adantl φ n m B m A 1 B n = B n A 1 B
46 33 oveq2d φ n A 1 B m 0 B m n = A 1 B B n
47 40 45 46 3eqtr4d φ n m B m A 1 B n = A 1 B m 0 B m n
48 7 8 14 23 26 38 47 climmulc2 φ m B m A 1 B A 1 B 0
49 23 mul01d φ A 1 B 0 = 0
50 48 49 breqtrd φ m B m A 1 B 0
51 36 rpred φ n B n
52 22 adantr φ n A 1 B
53 51 52 remulcld φ n B n A 1 B
54 53 recnd φ n B n A 1 B
55 7 8 26 45 54 clim0c φ m B m A 1 B 0 x + j n j B n A 1 B < x
56 50 55 mpbid φ x + j n j B n A 1 B < x
57 nnz j j
58 57 adantl φ x + j j
59 uzid j j j
60 oveq2 n = j B n = B j
61 60 fvoveq1d n = j B n A 1 B = B j A 1 B
62 61 breq1d n = j B n A 1 B < x B j A 1 B < x
63 62 rspcv j j n j B n A 1 B < x B j A 1 B < x
64 58 59 63 3syl φ x + j n j B n A 1 B < x B j A 1 B < x
65 1 adantr φ j n j D Met X
66 simpl j n j j
67 ffvelrn F : X j F j X
68 2 66 67 syl2an φ j n j F j X
69 eluznn j n j n
70 ffvelrn F : X n F n X
71 2 69 70 syl2an φ j n j F n X
72 metcl D Met X F j X F n X F j D F n
73 65 68 71 72 syl3anc φ j n j F j D F n
74 eqid j = j
75 nnnn0 j j 0
76 75 ad2antrl φ j n j j 0
77 76 nn0zd φ j n j j
78 oveq2 m = k B m = B k
79 78 oveq2d m = k A B m = A B k
80 eqid m j A B m = m j A B m
81 ovex A B k V
82 79 80 81 fvmpt k j m j A B m k = A B k
83 82 adantl φ j n j k j m j A B m k = A B k
84 3 ad2antrr φ j n j k j A
85 10 ad2antrr φ j n j k j B
86 eluznn0 j 0 k j k 0
87 76 86 sylan φ j n j k j k 0
88 85 87 reexpcld φ j n j k j B k
89 84 88 remulcld φ j n j k j A B k
90 89 recnd φ j n j k j A B k
91 3 recnd φ A
92 91 adantr φ j n j A
93 9 adantr φ j n j B
94 13 adantr φ j n j B < 1
95 eqid m j B m = m j B m
96 ovex B k V
97 78 95 96 fvmpt k j m j B m k = B k
98 97 adantl φ j n j k j m j B m k = B k
99 93 94 76 98 geolim2 φ j n j seq j + m j B m B j 1 B
100 88 recnd φ j n j k j B k
101 98 100 eqeltrd φ j n j k j m j B m k
102 98 oveq2d φ j n j k j A m j B m k = A B k
103 83 102 eqtr4d φ j n j k j m j A B m k = A m j B m k
104 74 77 92 99 101 103 isermulc2 φ j n j seq j + m j A B m A B j 1 B
105 4 adantr φ j n j B +
106 105 77 rpexpcld φ j n j B j +
107 106 rpcnd φ j n j B j
108 17 recnd φ 1 B
109 108 adantr φ j n j 1 B
110 21 rpne0d φ 1 B 0
111 110 adantr φ j n j 1 B 0
112 92 107 109 111 div12d φ j n j A B j 1 B = B j A 1 B
113 104 112 breqtrd φ j n j seq j + m j A B m B j A 1 B
114 74 77 83 90 113 isumclim φ j n j k j A B k = B j A 1 B
115 seqex seq j + m j A B m V
116 ovex A B j 1 B V
117 115 116 breldm seq j + m j A B m A B j 1 B seq j + m j A B m dom
118 104 117 syl φ j n j seq j + m j A B m dom
119 74 77 83 89 118 isumrecl φ j n j k j A B k
120 114 119 eqeltrrd φ j n j B j A 1 B
121 120 recnd φ j n j B j A 1 B
122 121 abscld φ j n j B j A 1 B
123 fzfid φ j n j j n 1 Fin
124 simpll φ j n j k j n 1 φ
125 elfzuz k j n 1 k j
126 simprl φ j n j j
127 eluznn j k j k
128 126 127 sylan φ j n j k j k
129 125 128 sylan2 φ j n j k j n 1 k
130 1 adantr φ k D Met X
131 2 ffvelrnda φ k F k X
132 peano2nn k k + 1
133 ffvelrn F : X k + 1 F k + 1 X
134 2 132 133 syl2an φ k F k + 1 X
135 metcl D Met X F k X F k + 1 X F k D F k + 1
136 130 131 134 135 syl3anc φ k F k D F k + 1
137 124 129 136 syl2anc φ j n j k j n 1 F k D F k + 1
138 123 137 fsumrecl φ j n j k = j n 1 F k D F k + 1
139 simprr φ j n j n j
140 elfzuz k j n k j
141 simpll φ j n j k j φ
142 141 128 131 syl2anc φ j n j k j F k X
143 140 142 sylan2 φ j n j k j n F k X
144 65 139 143 mettrifi φ j n j F j D F n k = j n 1 F k D F k + 1
145 125 89 sylan2 φ j n j k j n 1 A B k
146 123 145 fsumrecl φ j n j k = j n 1 A B k
147 124 129 6 syl2anc φ j n j k j n 1 F k D F k + 1 A B k
148 123 137 145 147 fsumle φ j n j k = j n 1 F k D F k + 1 k = j n 1 A B k
149 fzssuz j n 1 j
150 149 a1i φ j n j j n 1 j
151 0red φ k 0
152 nnz k k
153 rpexpcl B + k B k +
154 4 152 153 syl2an φ k B k +
155 136 154 rerpdivcld φ k F k D F k + 1 B k
156 3 adantr φ k A
157 metge0 D Met X F k X F k + 1 X 0 F k D F k + 1
158 130 131 134 157 syl3anc φ k 0 F k D F k + 1
159 136 154 158 divge0d φ k 0 F k D F k + 1 B k
160 136 156 154 ledivmul2d φ k F k D F k + 1 B k A F k D F k + 1 A B k
161 6 160 mpbird φ k F k D F k + 1 B k A
162 151 155 156 159 161 letrd φ k 0 A
163 141 128 162 syl2anc φ j n j k j 0 A
164 141 128 154 syl2anc φ j n j k j B k +
165 164 rpge0d φ j n j k j 0 B k
166 84 88 163 165 mulge0d φ j n j k j 0 A B k
167 74 77 123 150 83 89 166 118 isumless φ j n j k = j n 1 A B k k j A B k
168 138 146 119 148 167 letrd φ j n j k = j n 1 F k D F k + 1 k j A B k
169 73 138 119 144 168 letrd φ j n j F j D F n k j A B k
170 169 114 breqtrd φ j n j F j D F n B j A 1 B
171 120 leabsd φ j n j B j A 1 B B j A 1 B
172 73 120 122 170 171 letrd φ j n j F j D F n B j A 1 B
173 172 adantlr φ x + j n j F j D F n B j A 1 B
174 73 adantlr φ x + j n j F j D F n
175 122 adantlr φ x + j n j B j A 1 B
176 rpre x + x
177 176 ad2antlr φ x + j n j x
178 lelttr F j D F n B j A 1 B x F j D F n B j A 1 B B j A 1 B < x F j D F n < x
179 174 175 177 178 syl3anc φ x + j n j F j D F n B j A 1 B B j A 1 B < x F j D F n < x
180 173 179 mpand φ x + j n j B j A 1 B < x F j D F n < x
181 180 anassrs φ x + j n j B j A 1 B < x F j D F n < x
182 181 ralrimdva φ x + j B j A 1 B < x n j F j D F n < x
183 64 182 syld φ x + j n j B n A 1 B < x n j F j D F n < x
184 183 reximdva φ x + j n j B n A 1 B < x j n j F j D F n < x
185 184 ralimdva φ x + j n j B n A 1 B < x x + j n j F j D F n < x
186 56 185 mpd φ x + j n j F j D F n < x
187 metxmet D Met X D ∞Met X
188 1 187 syl φ D ∞Met X
189 eqidd φ n F n = F n
190 eqidd φ j F j = F j
191 7 188 8 189 190 2 iscauf φ F Cau D x + j n j F j D F n < x
192 186 191 mpbird φ F Cau D