Step |
Hyp |
Ref |
Expression |
1 |
|
geomulcvg.1 |
|
2 |
|
elnn0 |
|
3 |
|
simpr |
|
4 |
3
|
oveq1d |
|
5 |
|
0exp |
|
6 |
4 5
|
sylan9eq |
|
7 |
6
|
oveq2d |
|
8 |
|
nncn |
|
9 |
8
|
adantl |
|
10 |
9
|
mul01d |
|
11 |
7 10
|
eqtrd |
|
12 |
|
simpr |
|
13 |
12
|
oveq1d |
|
14 |
|
simplll |
|
15 |
|
0nn0 |
|
16 |
12 15
|
eqeltrdi |
|
17 |
14 16
|
expcld |
|
18 |
17
|
mul02d |
|
19 |
13 18
|
eqtrd |
|
20 |
11 19
|
jaodan |
|
21 |
2 20
|
sylan2b |
|
22 |
21
|
mpteq2dva |
|
23 |
1 22
|
eqtrid |
|
24 |
|
fconstmpt |
|
25 |
|
nn0uz |
|
26 |
25
|
xpeq1i |
|
27 |
24 26
|
eqtr3i |
|
28 |
23 27
|
eqtrdi |
|
29 |
28
|
seqeq3d |
|
30 |
|
0z |
|
31 |
|
serclim0 |
|
32 |
30 31
|
ax-mp |
|
33 |
29 32
|
eqbrtrdi |
|
34 |
|
seqex |
|
35 |
|
c0ex |
|
36 |
34 35
|
breldm |
|
37 |
33 36
|
syl |
|
38 |
|
1red |
|
39 |
|
abscl |
|
40 |
39
|
adantr |
|
41 |
|
peano2re |
|
42 |
40 41
|
syl |
|
43 |
42
|
rehalfcld |
|
44 |
43
|
adantr |
|
45 |
|
absrpcl |
|
46 |
45
|
adantlr |
|
47 |
44 46
|
rerpdivcld |
|
48 |
40
|
recnd |
|
49 |
48
|
mulid2d |
|
50 |
|
simpr |
|
51 |
|
1re |
|
52 |
|
avglt1 |
|
53 |
40 51 52
|
sylancl |
|
54 |
50 53
|
mpbid |
|
55 |
49 54
|
eqbrtrd |
|
56 |
55
|
adantr |
|
57 |
38 44 46
|
ltmuldivd |
|
58 |
56 57
|
mpbid |
|
59 |
|
expmulnbnd |
|
60 |
38 47 58 59
|
syl3anc |
|
61 |
|
eluznn0 |
|
62 |
|
nn0cn |
|
63 |
62
|
adantl |
|
64 |
63
|
mulid2d |
|
65 |
43
|
recnd |
|
66 |
65
|
ad2antrr |
|
67 |
48
|
ad2antrr |
|
68 |
46
|
adantr |
|
69 |
68
|
rpne0d |
|
70 |
|
simpr |
|
71 |
66 67 69 70
|
expdivd |
|
72 |
64 71
|
breq12d |
|
73 |
|
nn0re |
|
74 |
73
|
adantl |
|
75 |
|
reexpcl |
|
76 |
44 75
|
sylan |
|
77 |
40
|
adantr |
|
78 |
|
reexpcl |
|
79 |
77 78
|
sylan |
|
80 |
77
|
adantr |
|
81 |
|
nn0z |
|
82 |
81
|
adantl |
|
83 |
68
|
rpgt0d |
|
84 |
|
expgt0 |
|
85 |
80 82 83 84
|
syl3anc |
|
86 |
|
ltmuldiv |
|
87 |
74 76 79 85 86
|
syl112anc |
|
88 |
72 87
|
bitr4d |
|
89 |
61 88
|
sylan2 |
|
90 |
89
|
anassrs |
|
91 |
90
|
ralbidva |
|
92 |
|
simprl |
|
93 |
|
oveq2 |
|
94 |
|
eqid |
|
95 |
|
ovex |
|
96 |
93 94 95
|
fvmpt |
|
97 |
96
|
adantl |
|
98 |
43
|
ad2antrr |
|
99 |
|
simpr |
|
100 |
98 99
|
reexpcld |
|
101 |
97 100
|
eqeltrd |
|
102 |
|
id |
|
103 |
|
oveq2 |
|
104 |
102 103
|
oveq12d |
|
105 |
|
ovex |
|
106 |
104 1 105
|
fvmpt |
|
107 |
106
|
adantl |
|
108 |
|
nn0cn |
|
109 |
108
|
adantl |
|
110 |
|
expcl |
|
111 |
110
|
ad4ant14 |
|
112 |
109 111
|
mulcld |
|
113 |
107 112
|
eqeltrd |
|
114 |
|
0red |
|
115 |
|
absge0 |
|
116 |
115
|
adantr |
|
117 |
114 40 43 116 54
|
lelttrd |
|
118 |
114 43 117
|
ltled |
|
119 |
43 118
|
absidd |
|
120 |
|
avglt2 |
|
121 |
40 51 120
|
sylancl |
|
122 |
50 121
|
mpbid |
|
123 |
119 122
|
eqbrtrd |
|
124 |
|
oveq2 |
|
125 |
|
ovex |
|
126 |
124 94 125
|
fvmpt |
|
127 |
126
|
adantl |
|
128 |
65 123 127
|
geolim |
|
129 |
|
seqex |
|
130 |
|
ovex |
|
131 |
129 130
|
breldm |
|
132 |
128 131
|
syl |
|
133 |
132
|
adantr |
|
134 |
|
1red |
|
135 |
|
eluznn0 |
|
136 |
92 135
|
sylan |
|
137 |
136
|
nn0red |
|
138 |
|
simplll |
|
139 |
138
|
abscld |
|
140 |
139 136
|
reexpcld |
|
141 |
137 140
|
remulcld |
|
142 |
136 100
|
syldan |
|
143 |
|
simprr |
|
144 |
|
oveq2 |
|
145 |
102 144
|
oveq12d |
|
146 |
145 93
|
breq12d |
|
147 |
146
|
rspccva |
|
148 |
143 147
|
sylan |
|
149 |
141 142 148
|
ltled |
|
150 |
136
|
nn0cnd |
|
151 |
138 136
|
expcld |
|
152 |
150 151
|
absmuld |
|
153 |
136
|
nn0ge0d |
|
154 |
137 153
|
absidd |
|
155 |
138 136
|
absexpd |
|
156 |
154 155
|
oveq12d |
|
157 |
152 156
|
eqtrd |
|
158 |
142
|
recnd |
|
159 |
158
|
mulid2d |
|
160 |
149 157 159
|
3brtr4d |
|
161 |
136 106
|
syl |
|
162 |
161
|
fveq2d |
|
163 |
136 96
|
syl |
|
164 |
163
|
oveq2d |
|
165 |
160 162 164
|
3brtr4d |
|
166 |
25 92 101 113 133 134 165
|
cvgcmpce |
|
167 |
166
|
expr |
|
168 |
167
|
adantlr |
|
169 |
91 168
|
sylbid |
|
170 |
169
|
rexlimdva |
|
171 |
60 170
|
mpd |
|
172 |
37 171
|
pm2.61dane |
|