Metamath Proof Explorer


Theorem geoser

Description: The value of the finite geometric series 1 + A ^ 1 + A ^ 2 + ... + A ^ ( N - 1 ) . This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006) (Proof shortened by Mario Carneiro, 15-Jun-2014)

Ref Expression
Hypotheses geoser.1 φ A
geoser.2 φ A 1
geoser.3 φ N 0
Assertion geoser φ k = 0 N 1 A k = 1 A N 1 A

Proof

Step Hyp Ref Expression
1 geoser.1 φ A
2 geoser.2 φ A 1
3 geoser.3 φ N 0
4 0nn0 0 0
5 4 a1i φ 0 0
6 nn0uz 0 = 0
7 3 6 eleqtrdi φ N 0
8 1 2 5 7 geoserg φ k 0 ..^ N A k = A 0 A N 1 A
9 3 nn0zd φ N
10 fzoval N 0 ..^ N = 0 N 1
11 9 10 syl φ 0 ..^ N = 0 N 1
12 11 sumeq1d φ k 0 ..^ N A k = k = 0 N 1 A k
13 1 exp0d φ A 0 = 1
14 13 oveq1d φ A 0 A N = 1 A N
15 14 oveq1d φ A 0 A N 1 A = 1 A N 1 A
16 8 12 15 3eqtr3d φ k = 0 N 1 A k = 1 A N 1 A