Step |
Hyp |
Ref |
Expression |
1 |
|
gexcl2.1 |
|
2 |
|
gexcl2.2 |
|
3 |
|
simplr |
|
4 |
3
|
oveq1d |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
1 2 5 6
|
gexid |
|
8 |
7
|
adantl |
|
9 |
1 5
|
mulg1 |
|
10 |
9
|
adantl |
|
11 |
4 8 10
|
3eqtr3rd |
|
12 |
|
velsn |
|
13 |
11 12
|
sylibr |
|
14 |
13
|
ex |
|
15 |
14
|
ssrdv |
|
16 |
1 6
|
mndidcl |
|
17 |
16
|
adantr |
|
18 |
17
|
snssd |
|
19 |
15 18
|
eqssd |
|
20 |
|
fvex |
|
21 |
20
|
ensn1 |
|
22 |
19 21
|
eqbrtrdi |
|
23 |
|
simpl |
|
24 |
|
1nn |
|
25 |
24
|
a1i |
|
26 |
9
|
adantl |
|
27 |
|
en1eqsn |
|
28 |
16 27
|
sylan |
|
29 |
28
|
eleq2d |
|
30 |
29
|
biimpa |
|
31 |
30 12
|
sylib |
|
32 |
26 31
|
eqtrd |
|
33 |
32
|
ralrimiva |
|
34 |
1 2 5 6
|
gexlem2 |
|
35 |
23 25 33 34
|
syl3anc |
|
36 |
|
elfz1eq |
|
37 |
35 36
|
syl |
|
38 |
22 37
|
impbida |
|