Metamath Proof Explorer


Theorem gex2abl

Description: A group with exponent 2 (or 1) is abelian. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexex.1 X=BaseG
gexex.2 E=gExG
Assertion gex2abl GGrpE2GAbel

Proof

Step Hyp Ref Expression
1 gexex.1 X=BaseG
2 gexex.2 E=gExG
3 1 a1i GGrpE2X=BaseG
4 eqidd GGrpE2+G=+G
5 simpl GGrpE2GGrp
6 simp1l GGrpE2xXyXGGrp
7 simp2 GGrpE2xXyXxX
8 simp3 GGrpE2xXyXyX
9 eqid +G=+G
10 1 9 grpass GGrpxXyXyXx+Gy+Gy=x+Gy+Gy
11 6 7 8 8 10 syl13anc GGrpE2xXyXx+Gy+Gy=x+Gy+Gy
12 eqid G=G
13 1 12 9 mulg2 yX2Gy=y+Gy
14 8 13 syl GGrpE2xXyX2Gy=y+Gy
15 simp1r GGrpE2xXyXE2
16 eqid 0G=0G
17 1 2 12 16 gexdvdsi GGrpyXE22Gy=0G
18 6 8 15 17 syl3anc GGrpE2xXyX2Gy=0G
19 14 18 eqtr3d GGrpE2xXyXy+Gy=0G
20 19 oveq2d GGrpE2xXyXx+Gy+Gy=x+G0G
21 1 9 16 grprid GGrpxXx+G0G=x
22 6 7 21 syl2anc GGrpE2xXyXx+G0G=x
23 11 20 22 3eqtrd GGrpE2xXyXx+Gy+Gy=x
24 23 oveq1d GGrpE2xXyXx+Gy+Gy+Gx=x+Gx
25 1 12 9 mulg2 xX2Gx=x+Gx
26 7 25 syl GGrpE2xXyX2Gx=x+Gx
27 1 2 12 16 gexdvdsi GGrpxXE22Gx=0G
28 6 7 15 27 syl3anc GGrpE2xXyX2Gx=0G
29 24 26 28 3eqtr2d GGrpE2xXyXx+Gy+Gy+Gx=0G
30 1 9 grpcl GGrpxXyXx+GyX
31 6 7 8 30 syl3anc GGrpE2xXyXx+GyX
32 1 2 12 16 gexdvdsi GGrpx+GyXE22Gx+Gy=0G
33 6 31 15 32 syl3anc GGrpE2xXyX2Gx+Gy=0G
34 1 12 9 mulg2 x+GyX2Gx+Gy=x+Gy+Gx+Gy
35 31 34 syl GGrpE2xXyX2Gx+Gy=x+Gy+Gx+Gy
36 29 33 35 3eqtr2d GGrpE2xXyXx+Gy+Gy+Gx=x+Gy+Gx+Gy
37 1 9 grpass GGrpx+GyXyXxXx+Gy+Gy+Gx=x+Gy+Gy+Gx
38 6 31 8 7 37 syl13anc GGrpE2xXyXx+Gy+Gy+Gx=x+Gy+Gy+Gx
39 36 38 eqtr3d GGrpE2xXyXx+Gy+Gx+Gy=x+Gy+Gy+Gx
40 1 9 grpcl GGrpyXxXy+GxX
41 6 8 7 40 syl3anc GGrpE2xXyXy+GxX
42 1 9 grplcan GGrpx+GyXy+GxXx+GyXx+Gy+Gx+Gy=x+Gy+Gy+Gxx+Gy=y+Gx
43 6 31 41 31 42 syl13anc GGrpE2xXyXx+Gy+Gx+Gy=x+Gy+Gy+Gxx+Gy=y+Gx
44 39 43 mpbid GGrpE2xXyXx+Gy=y+Gx
45 3 4 5 44 isabld GGrpE2GAbel