Description: A group with exponent 2 (or 1) is abelian. (Contributed by Mario Carneiro, 24-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gexex.1 | |
|
gexex.2 | |
||
Assertion | gex2abl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gexex.1 | |
|
2 | gexex.2 | |
|
3 | 1 | a1i | |
4 | eqidd | |
|
5 | simpl | |
|
6 | simp1l | |
|
7 | simp2 | |
|
8 | simp3 | |
|
9 | eqid | |
|
10 | 1 9 | grpass | |
11 | 6 7 8 8 10 | syl13anc | |
12 | eqid | |
|
13 | 1 12 9 | mulg2 | |
14 | 8 13 | syl | |
15 | simp1r | |
|
16 | eqid | |
|
17 | 1 2 12 16 | gexdvdsi | |
18 | 6 8 15 17 | syl3anc | |
19 | 14 18 | eqtr3d | |
20 | 19 | oveq2d | |
21 | 1 9 16 | grprid | |
22 | 6 7 21 | syl2anc | |
23 | 11 20 22 | 3eqtrd | |
24 | 23 | oveq1d | |
25 | 1 12 9 | mulg2 | |
26 | 7 25 | syl | |
27 | 1 2 12 16 | gexdvdsi | |
28 | 6 7 15 27 | syl3anc | |
29 | 24 26 28 | 3eqtr2d | |
30 | 1 9 | grpcl | |
31 | 6 7 8 30 | syl3anc | |
32 | 1 2 12 16 | gexdvdsi | |
33 | 6 31 15 32 | syl3anc | |
34 | 1 12 9 | mulg2 | |
35 | 31 34 | syl | |
36 | 29 33 35 | 3eqtr2d | |
37 | 1 9 | grpass | |
38 | 6 31 8 7 37 | syl13anc | |
39 | 36 38 | eqtr3d | |
40 | 1 9 | grpcl | |
41 | 6 8 7 40 | syl3anc | |
42 | 1 9 | grplcan | |
43 | 6 31 41 31 42 | syl13anc | |
44 | 39 43 | mpbid | |
45 | 3 4 5 44 | isabld | |