Metamath Proof Explorer


Theorem gexcl3

Description: If the order of every group element is bounded by N , the group has finite exponent. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexod.1 X = Base G
gexod.2 E = gEx G
gexod.3 O = od G
Assertion gexcl3 G Grp x X O x 1 N E

Proof

Step Hyp Ref Expression
1 gexod.1 X = Base G
2 gexod.2 E = gEx G
3 gexod.3 O = od G
4 simpl G Grp x X O x 1 N G Grp
5 1 grpbn0 G Grp X
6 r19.2z X x X O x 1 N x X O x 1 N
7 5 6 sylan G Grp x X O x 1 N x X O x 1 N
8 elfzuz2 O x 1 N N 1
9 nnuz = 1
10 8 9 eleqtrrdi O x 1 N N
11 10 rexlimivw x X O x 1 N N
12 7 11 syl G Grp x X O x 1 N N
13 12 nnnn0d G Grp x X O x 1 N N 0
14 13 faccld G Grp x X O x 1 N N !
15 elfzuzb O x 1 N O x 1 N O x
16 elnnuz O x O x 1
17 dvdsfac O x N O x O x N !
18 16 17 sylanbr O x 1 N O x O x N !
19 15 18 sylbi O x 1 N O x N !
20 19 adantl G Grp x X O x 1 N O x N !
21 simpll G Grp x X O x 1 N G Grp
22 simplr G Grp x X O x 1 N x X
23 10 adantl G Grp x X O x 1 N N
24 23 nnnn0d G Grp x X O x 1 N N 0
25 24 faccld G Grp x X O x 1 N N !
26 25 nnzd G Grp x X O x 1 N N !
27 eqid G = G
28 eqid 0 G = 0 G
29 1 3 27 28 oddvds G Grp x X N ! O x N ! N ! G x = 0 G
30 21 22 26 29 syl3anc G Grp x X O x 1 N O x N ! N ! G x = 0 G
31 20 30 mpbid G Grp x X O x 1 N N ! G x = 0 G
32 31 ex G Grp x X O x 1 N N ! G x = 0 G
33 32 ralimdva G Grp x X O x 1 N x X N ! G x = 0 G
34 33 imp G Grp x X O x 1 N x X N ! G x = 0 G
35 1 2 27 28 gexlem2 G Grp N ! x X N ! G x = 0 G E 1 N !
36 4 14 34 35 syl3anc G Grp x X O x 1 N E 1 N !
37 elfznn E 1 N ! E
38 36 37 syl G Grp x X O x 1 N E