| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gexod.1 |
|
| 2 |
|
gexod.2 |
|
| 3 |
|
gexod.3 |
|
| 4 |
|
simpl |
|
| 5 |
1
|
grpbn0 |
|
| 6 |
|
r19.2z |
|
| 7 |
5 6
|
sylan |
|
| 8 |
|
elfzuz2 |
|
| 9 |
|
nnuz |
|
| 10 |
8 9
|
eleqtrrdi |
|
| 11 |
10
|
rexlimivw |
|
| 12 |
7 11
|
syl |
|
| 13 |
12
|
nnnn0d |
|
| 14 |
13
|
faccld |
|
| 15 |
|
elfzuzb |
|
| 16 |
|
elnnuz |
|
| 17 |
|
dvdsfac |
|
| 18 |
16 17
|
sylanbr |
|
| 19 |
15 18
|
sylbi |
|
| 20 |
19
|
adantl |
|
| 21 |
|
simpll |
|
| 22 |
|
simplr |
|
| 23 |
10
|
adantl |
|
| 24 |
23
|
nnnn0d |
|
| 25 |
24
|
faccld |
|
| 26 |
25
|
nnzd |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
1 3 27 28
|
oddvds |
|
| 30 |
21 22 26 29
|
syl3anc |
|
| 31 |
20 30
|
mpbid |
|
| 32 |
31
|
ex |
|
| 33 |
32
|
ralimdva |
|
| 34 |
33
|
imp |
|
| 35 |
1 2 27 28
|
gexlem2 |
|
| 36 |
4 14 34 35
|
syl3anc |
|
| 37 |
|
elfznn |
|
| 38 |
36 37
|
syl |
|