Metamath Proof Explorer


Theorem gexdvds3

Description: The exponent of a finite group divides the order (cardinality) of the group. Corollary of Lagrange's theorem for the order of a subgroup. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexcl2.1 X = Base G
gexcl2.2 E = gEx G
Assertion gexdvds3 G Grp X Fin E X

Proof

Step Hyp Ref Expression
1 gexcl2.1 X = Base G
2 gexcl2.2 E = gEx G
3 eqid od G = od G
4 1 3 oddvds2 G Grp X Fin x X od G x X
5 4 3expa G Grp X Fin x X od G x X
6 5 ralrimiva G Grp X Fin x X od G x X
7 hashcl X Fin X 0
8 7 adantl G Grp X Fin X 0
9 8 nn0zd G Grp X Fin X
10 1 2 3 gexdvds2 G Grp X E X x X od G x X
11 9 10 syldan G Grp X Fin E X x X od G x X
12 6 11 mpbird G Grp X Fin E X