Metamath Proof Explorer


Theorem gexdvdsi

Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexcl.1 X = Base G
gexcl.2 E = gEx G
gexid.3 · ˙ = G
gexid.4 0 ˙ = 0 G
Assertion gexdvdsi G Grp A X E N N · ˙ A = 0 ˙

Proof

Step Hyp Ref Expression
1 gexcl.1 X = Base G
2 gexcl.2 E = gEx G
3 gexid.3 · ˙ = G
4 gexid.4 0 ˙ = 0 G
5 simp3 G Grp A X E N E N
6 dvdszrcl E N E N
7 divides E N E N x x E = N
8 6 7 biadanii E N E N x x E = N
9 5 8 sylib G Grp A X E N E N x x E = N
10 9 simprd G Grp A X E N x x E = N
11 simpl1 G Grp A X E N x G Grp
12 simpr G Grp A X E N x x
13 9 simplld G Grp A X E N E
14 13 adantr G Grp A X E N x E
15 simpl2 G Grp A X E N x A X
16 1 3 mulgass G Grp x E A X x E · ˙ A = x · ˙ E · ˙ A
17 11 12 14 15 16 syl13anc G Grp A X E N x x E · ˙ A = x · ˙ E · ˙ A
18 1 2 3 4 gexid A X E · ˙ A = 0 ˙
19 15 18 syl G Grp A X E N x E · ˙ A = 0 ˙
20 19 oveq2d G Grp A X E N x x · ˙ E · ˙ A = x · ˙ 0 ˙
21 1 3 4 mulgz G Grp x x · ˙ 0 ˙ = 0 ˙
22 21 3ad2antl1 G Grp A X E N x x · ˙ 0 ˙ = 0 ˙
23 17 20 22 3eqtrd G Grp A X E N x x E · ˙ A = 0 ˙
24 oveq1 x E = N x E · ˙ A = N · ˙ A
25 24 eqeq1d x E = N x E · ˙ A = 0 ˙ N · ˙ A = 0 ˙
26 23 25 syl5ibcom G Grp A X E N x x E = N N · ˙ A = 0 ˙
27 26 rexlimdva G Grp A X E N x x E = N N · ˙ A = 0 ˙
28 10 27 mpd G Grp A X E N N · ˙ A = 0 ˙