| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gexcl.1 |
|
| 2 |
|
gexcl.2 |
|
| 3 |
|
gexid.3 |
|
| 4 |
|
gexid.4 |
|
| 5 |
|
simp3 |
|
| 6 |
|
dvdszrcl |
|
| 7 |
|
divides |
|
| 8 |
6 7
|
biadanii |
|
| 9 |
5 8
|
sylib |
|
| 10 |
9
|
simprd |
|
| 11 |
|
simpl1 |
|
| 12 |
|
simpr |
|
| 13 |
9
|
simplld |
|
| 14 |
13
|
adantr |
|
| 15 |
|
simpl2 |
|
| 16 |
1 3
|
mulgass |
|
| 17 |
11 12 14 15 16
|
syl13anc |
|
| 18 |
1 2 3 4
|
gexid |
|
| 19 |
15 18
|
syl |
|
| 20 |
19
|
oveq2d |
|
| 21 |
1 3 4
|
mulgz |
|
| 22 |
21
|
3ad2antl1 |
|
| 23 |
17 20 22
|
3eqtrd |
|
| 24 |
|
oveq1 |
|
| 25 |
24
|
eqeq1d |
|
| 26 |
23 25
|
syl5ibcom |
|
| 27 |
26
|
rexlimdva |
|
| 28 |
10 27
|
mpd |
|