Metamath Proof Explorer


Theorem gexex

Description: In an abelian group with finite exponent, there is an element in the group with order equal to the exponent. In other words, all orders of elements divide the largest order of an element of the group. This fails if E = 0 , for example in an infinite p-group, where there are elements of arbitrarily large orders (so E is zero) but no elements of infinite order. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexex.1 X = Base G
gexex.2 E = gEx G
gexex.3 O = od G
Assertion gexex G Abel E x X O x = E

Proof

Step Hyp Ref Expression
1 gexex.1 X = Base G
2 gexex.2 E = gEx G
3 gexex.3 O = od G
4 simpll G Abel E x X O x = sup ran O < G Abel
5 simplr G Abel E x X O x = sup ran O < E
6 simprl G Abel E x X O x = sup ran O < x X
7 1 3 odf O : X 0
8 frn O : X 0 ran O 0
9 7 8 ax-mp ran O 0
10 nn0ssz 0
11 9 10 sstri ran O
12 nnz E E
13 12 adantl G Abel E E
14 ablgrp G Abel G Grp
15 14 adantr G Abel E G Grp
16 1 2 3 gexod G Grp x X O x E
17 15 16 sylan G Abel E x X O x E
18 1 3 odcl x X O x 0
19 18 adantl G Abel E x X O x 0
20 19 nn0zd G Abel E x X O x
21 simplr G Abel E x X E
22 dvdsle O x E O x E O x E
23 20 21 22 syl2anc G Abel E x X O x E O x E
24 17 23 mpd G Abel E x X O x E
25 24 ralrimiva G Abel E x X O x E
26 ffn O : X 0 O Fn X
27 7 26 ax-mp O Fn X
28 breq1 y = O x y E O x E
29 28 ralrn O Fn X y ran O y E x X O x E
30 27 29 ax-mp y ran O y E x X O x E
31 25 30 sylibr G Abel E y ran O y E
32 brralrspcev E y ran O y E n y ran O y n
33 13 31 32 syl2anc G Abel E n y ran O y n
34 33 ad2antrr G Abel E x X O x = sup ran O < y X n y ran O y n
35 27 a1i G Abel E x X O x = sup ran O < O Fn X
36 fnfvelrn O Fn X y X O y ran O
37 35 36 sylan G Abel E x X O x = sup ran O < y X O y ran O
38 suprzub ran O n y ran O y n O y ran O O y sup ran O <
39 11 34 37 38 mp3an2i G Abel E x X O x = sup ran O < y X O y sup ran O <
40 simplrr G Abel E x X O x = sup ran O < y X O x = sup ran O <
41 39 40 breqtrrd G Abel E x X O x = sup ran O < y X O y O x
42 1 2 3 4 5 6 41 gexexlem G Abel E x X O x = sup ran O < O x = E
43 1 grpbn0 G Grp X
44 15 43 syl G Abel E X
45 7 fdmi dom O = X
46 45 eqeq1i dom O = X =
47 dm0rn0 dom O = ran O =
48 46 47 bitr3i X = ran O =
49 48 necon3bii X ran O
50 44 49 sylib G Abel E ran O
51 suprzcl2 ran O ran O n y ran O y n sup ran O < ran O
52 11 50 33 51 mp3an2i G Abel E sup ran O < ran O
53 fvelrnb O Fn X sup ran O < ran O x X O x = sup ran O <
54 27 53 ax-mp sup ran O < ran O x X O x = sup ran O <
55 52 54 sylib G Abel E x X O x = sup ran O <
56 42 55 reximddv G Abel E x X O x = E