Metamath Proof Explorer


Theorem gexnnod

Description: Every group element has finite order if the exponent is finite. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexod.1 X = Base G
gexod.2 E = gEx G
gexod.3 O = od G
Assertion gexnnod G Grp E A X O A

Proof

Step Hyp Ref Expression
1 gexod.1 X = Base G
2 gexod.2 E = gEx G
3 gexod.3 O = od G
4 nnne0 E E 0
5 4 3ad2ant2 G Grp E A X E 0
6 nnz E E
7 6 3ad2ant2 G Grp E A X E
8 0dvds E 0 E E = 0
9 7 8 syl G Grp E A X 0 E E = 0
10 9 necon3bbid G Grp E A X ¬ 0 E E 0
11 5 10 mpbird G Grp E A X ¬ 0 E
12 1 2 3 gexod G Grp A X O A E
13 12 3adant2 G Grp E A X O A E
14 breq1 O A = 0 O A E 0 E
15 13 14 syl5ibcom G Grp E A X O A = 0 0 E
16 11 15 mtod G Grp E A X ¬ O A = 0
17 1 3 odcl A X O A 0
18 17 3ad2ant3 G Grp E A X O A 0
19 elnn0 O A 0 O A O A = 0
20 18 19 sylib G Grp E A X O A O A = 0
21 20 ord G Grp E A X ¬ O A O A = 0
22 16 21 mt3d G Grp E A X O A