Metamath Proof Explorer


Theorem gexod

Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexod.1 X = Base G
gexod.2 E = gEx G
gexod.3 O = od G
Assertion gexod G Grp A X O A E

Proof

Step Hyp Ref Expression
1 gexod.1 X = Base G
2 gexod.2 E = gEx G
3 gexod.3 O = od G
4 eqid G = G
5 eqid 0 G = 0 G
6 1 2 4 5 gexid A X E G A = 0 G
7 6 adantl G Grp A X E G A = 0 G
8 1 2 gexcl G Grp E 0
9 8 adantr G Grp A X E 0
10 9 nn0zd G Grp A X E
11 1 3 4 5 oddvds G Grp A X E O A E E G A = 0 G
12 10 11 mpd3an3 G Grp A X O A E E G A = 0 G
13 7 12 mpbird G Grp A X O A E