Metamath Proof Explorer


Theorem gexval

Description: Value of the exponent of a group. (Contributed by Mario Carneiro, 23-Apr-2016) (Revised by AV, 26-Sep-2020)

Ref Expression
Hypotheses gexval.1 X = Base G
gexval.2 · ˙ = G
gexval.3 0 ˙ = 0 G
gexval.4 E = gEx G
gexval.i I = y | x X y · ˙ x = 0 ˙
Assertion gexval G V E = if I = 0 sup I <

Proof

Step Hyp Ref Expression
1 gexval.1 X = Base G
2 gexval.2 · ˙ = G
3 gexval.3 0 ˙ = 0 G
4 gexval.4 E = gEx G
5 gexval.i I = y | x X y · ˙ x = 0 ˙
6 df-gex gEx = g V y | x Base g y g x = 0 g / i if i = 0 sup i <
7 nnex V
8 7 rabex y | x Base g y g x = 0 g V
9 8 a1i G V g = G y | x Base g y g x = 0 g V
10 simpr G V g = G g = G
11 10 fveq2d G V g = G Base g = Base G
12 11 1 syl6eqr G V g = G Base g = X
13 10 fveq2d G V g = G g = G
14 13 2 syl6eqr G V g = G g = · ˙
15 14 oveqd G V g = G y g x = y · ˙ x
16 10 fveq2d G V g = G 0 g = 0 G
17 16 3 syl6eqr G V g = G 0 g = 0 ˙
18 15 17 eqeq12d G V g = G y g x = 0 g y · ˙ x = 0 ˙
19 12 18 raleqbidv G V g = G x Base g y g x = 0 g x X y · ˙ x = 0 ˙
20 19 rabbidv G V g = G y | x Base g y g x = 0 g = y | x X y · ˙ x = 0 ˙
21 20 5 syl6eqr G V g = G y | x Base g y g x = 0 g = I
22 21 eqeq2d G V g = G i = y | x Base g y g x = 0 g i = I
23 22 biimpa G V g = G i = y | x Base g y g x = 0 g i = I
24 23 eqeq1d G V g = G i = y | x Base g y g x = 0 g i = I =
25 23 infeq1d G V g = G i = y | x Base g y g x = 0 g sup i < = sup I <
26 24 25 ifbieq2d G V g = G i = y | x Base g y g x = 0 g if i = 0 sup i < = if I = 0 sup I <
27 9 26 csbied G V g = G y | x Base g y g x = 0 g / i if i = 0 sup i < = if I = 0 sup I <
28 elex G V G V
29 c0ex 0 V
30 ltso < Or
31 30 infex sup I < V
32 29 31 ifex if I = 0 sup I < V
33 32 a1i G V if I = 0 sup I < V
34 6 27 28 33 fvmptd2 G V gEx G = if I = 0 sup I <
35 4 34 syl5eq G V E = if I = 0 sup I <