Metamath Proof Explorer


Theorem ghmabl

Description: The image of an abelian group G under a group homomorphism F is an abelian group. (Contributed by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses ghmabl.x X = Base G
ghmabl.y Y = Base H
ghmabl.p + ˙ = + G
ghmabl.q ˙ = + H
ghmabl.f φ x X y X F x + ˙ y = F x ˙ F y
ghmabl.1 φ F : X onto Y
ghmabl.3 φ G Abel
Assertion ghmabl φ H Abel

Proof

Step Hyp Ref Expression
1 ghmabl.x X = Base G
2 ghmabl.y Y = Base H
3 ghmabl.p + ˙ = + G
4 ghmabl.q ˙ = + H
5 ghmabl.f φ x X y X F x + ˙ y = F x ˙ F y
6 ghmabl.1 φ F : X onto Y
7 ghmabl.3 φ G Abel
8 ablgrp G Abel G Grp
9 7 8 syl φ G Grp
10 5 1 2 3 4 6 9 ghmgrp φ H Grp
11 ablcmn G Abel G CMnd
12 7 11 syl φ G CMnd
13 1 2 3 4 5 6 12 ghmcmn φ H CMnd
14 isabl H Abel H Grp H CMnd
15 10 13 14 sylanbrc φ H Abel