Step |
Hyp |
Ref |
Expression |
1 |
|
ghmcnp.x |
|
2 |
|
ghmcnp.j |
|
3 |
|
ghmcnp.k |
|
4 |
|
eqid |
|
5 |
4
|
cnprcl |
|
6 |
5
|
a1i |
|
7 |
2 1
|
tmdtopon |
|
8 |
7
|
3ad2ant1 |
|
9 |
8
|
adantr |
|
10 |
|
simpl2 |
|
11 |
|
eqid |
|
12 |
3 11
|
tmdtopon |
|
13 |
10 12
|
syl |
|
14 |
|
simpr |
|
15 |
|
cnpf2 |
|
16 |
9 13 14 15
|
syl3anc |
|
17 |
16
|
adantr |
|
18 |
14
|
adantr |
|
19 |
|
eqid |
|
20 |
19
|
mptpreima |
|
21 |
10
|
adantr |
|
22 |
16
|
adantr |
|
23 |
|
simpll3 |
|
24 |
|
ghmgrp1 |
|
25 |
23 24
|
syl |
|
26 |
|
simprl |
|
27 |
5
|
adantl |
|
28 |
|
toponuni |
|
29 |
9 28
|
syl |
|
30 |
27 29
|
eleqtrrd |
|
31 |
30
|
adantr |
|
32 |
|
eqid |
|
33 |
1 32
|
grpsubcl |
|
34 |
25 26 31 33
|
syl3anc |
|
35 |
22 34
|
ffvelrnd |
|
36 |
|
eqid |
|
37 |
19 11 36 3
|
tmdlactcn |
|
38 |
21 35 37
|
syl2anc |
|
39 |
|
simprrl |
|
40 |
|
cnima |
|
41 |
38 39 40
|
syl2anc |
|
42 |
20 41
|
eqeltrrid |
|
43 |
|
oveq2 |
|
44 |
43
|
eleq1d |
|
45 |
22 31
|
ffvelrnd |
|
46 |
|
eqid |
|
47 |
1 32 46
|
ghmsub |
|
48 |
23 26 31 47
|
syl3anc |
|
49 |
48
|
oveq1d |
|
50 |
|
ghmgrp2 |
|
51 |
23 50
|
syl |
|
52 |
22 26
|
ffvelrnd |
|
53 |
11 36 46
|
grpnpcan |
|
54 |
51 52 45 53
|
syl3anc |
|
55 |
49 54
|
eqtrd |
|
56 |
|
simprrr |
|
57 |
55 56
|
eqeltrd |
|
58 |
44 45 57
|
elrabd |
|
59 |
|
cnpimaex |
|
60 |
18 42 58 59
|
syl3anc |
|
61 |
|
ssrab |
|
62 |
61
|
simprbi |
|
63 |
22
|
adantr |
|
64 |
63
|
ffnd |
|
65 |
9
|
adantr |
|
66 |
|
toponss |
|
67 |
65 66
|
sylan |
|
68 |
|
oveq2 |
|
69 |
68
|
eleq1d |
|
70 |
69
|
ralima |
|
71 |
64 67 70
|
syl2anc |
|
72 |
62 71
|
syl5ib |
|
73 |
|
eqid |
|
74 |
73
|
mptpreima |
|
75 |
|
simpl1 |
|
76 |
75
|
ad2antrr |
|
77 |
25
|
adantr |
|
78 |
31
|
adantr |
|
79 |
26
|
adantr |
|
80 |
1 32
|
grpsubcl |
|
81 |
77 78 79 80
|
syl3anc |
|
82 |
|
eqid |
|
83 |
73 1 82 2
|
tmdlactcn |
|
84 |
76 81 83
|
syl2anc |
|
85 |
|
simprl |
|
86 |
|
cnima |
|
87 |
84 85 86
|
syl2anc |
|
88 |
74 87
|
eqeltrrid |
|
89 |
|
oveq2 |
|
90 |
89
|
eleq1d |
|
91 |
1 82 32
|
grpnpcan |
|
92 |
77 78 79 91
|
syl3anc |
|
93 |
|
simprrl |
|
94 |
92 93
|
eqeltrd |
|
95 |
90 79 94
|
elrabd |
|
96 |
|
simprrr |
|
97 |
|
fveq2 |
|
98 |
97
|
oveq2d |
|
99 |
98
|
eleq1d |
|
100 |
99
|
rspccv |
|
101 |
96 100
|
syl |
|
102 |
101
|
adantr |
|
103 |
23
|
adantr |
|
104 |
34
|
adantr |
|
105 |
103 24
|
syl |
|
106 |
31
|
adantr |
|
107 |
26
|
adantr |
|
108 |
105 106 107 80
|
syl3anc |
|
109 |
|
simpr |
|
110 |
1 82
|
grpcl |
|
111 |
105 108 109 110
|
syl3anc |
|
112 |
1 82 36
|
ghmlin |
|
113 |
103 104 111 112
|
syl3anc |
|
114 |
|
eqid |
|
115 |
1 32 114
|
grpinvsub |
|
116 |
105 107 106 115
|
syl3anc |
|
117 |
116
|
oveq2d |
|
118 |
|
eqid |
|
119 |
1 82 118 114
|
grprinv |
|
120 |
105 104 119
|
syl2anc |
|
121 |
117 120
|
eqtr3d |
|
122 |
121
|
oveq1d |
|
123 |
1 82
|
grpass |
|
124 |
105 104 108 109 123
|
syl13anc |
|
125 |
1 82 118
|
grplid |
|
126 |
105 109 125
|
syl2anc |
|
127 |
122 124 126
|
3eqtr3d |
|
128 |
127
|
fveq2d |
|
129 |
113 128
|
eqtr3d |
|
130 |
129
|
adantlr |
|
131 |
130
|
eleq1d |
|
132 |
102 131
|
sylibd |
|
133 |
132
|
ralrimiva |
|
134 |
|
fveq2 |
|
135 |
134
|
eleq1d |
|
136 |
135
|
ralrab2 |
|
137 |
133 136
|
sylibr |
|
138 |
22
|
adantr |
|
139 |
138
|
ffund |
|
140 |
|
ssrab2 |
|
141 |
138
|
fdmd |
|
142 |
140 141
|
sseqtrrid |
|
143 |
|
funimass4 |
|
144 |
139 142 143
|
syl2anc |
|
145 |
137 144
|
mpbird |
|
146 |
|
eleq2 |
|
147 |
|
imaeq2 |
|
148 |
147
|
sseq1d |
|
149 |
146 148
|
anbi12d |
|
150 |
149
|
rspcev |
|
151 |
88 95 145 150
|
syl12anc |
|
152 |
151
|
expr |
|
153 |
72 152
|
sylan2d |
|
154 |
153
|
rexlimdva |
|
155 |
60 154
|
mpd |
|
156 |
155
|
anassrs |
|
157 |
156
|
expr |
|
158 |
157
|
ralrimiva |
|
159 |
9
|
adantr |
|
160 |
13
|
adantr |
|
161 |
|
simpr |
|
162 |
|
iscnp |
|
163 |
159 160 161 162
|
syl3anc |
|
164 |
17 158 163
|
mpbir2and |
|
165 |
164
|
ralrimiva |
|
166 |
|
cncnp |
|
167 |
9 13 166
|
syl2anc |
|
168 |
16 165 167
|
mpbir2and |
|
169 |
168
|
ex |
|
170 |
6 169
|
jcad |
|
171 |
4
|
cncnpi |
|
172 |
171
|
ancoms |
|
173 |
170 172
|
impbid1 |
|
174 |
8 28
|
syl |
|
175 |
174
|
eleq2d |
|
176 |
175
|
anbi1d |
|
177 |
173 176
|
bitr4d |
|