Metamath Proof Explorer


Theorem ghmco

Description: The composition of group homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Assertion ghmco F T GrpHom U G S GrpHom T F G S GrpHom U

Proof

Step Hyp Ref Expression
1 ghmmhm F T GrpHom U F T MndHom U
2 ghmmhm G S GrpHom T G S MndHom T
3 mhmco F T MndHom U G S MndHom T F G S MndHom U
4 1 2 3 syl2an F T GrpHom U G S GrpHom T F G S MndHom U
5 ghmgrp1 G S GrpHom T S Grp
6 ghmgrp2 F T GrpHom U U Grp
7 ghmmhmb S Grp U Grp S GrpHom U = S MndHom U
8 5 6 7 syl2anr F T GrpHom U G S GrpHom T S GrpHom U = S MndHom U
9 4 8 eleqtrrd F T GrpHom U G S GrpHom T F G S GrpHom U