Description: The image of a cyclic group under a surjective group homomorphism is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cygctb.1 | |
|
| ghmcyg.1 | |
||
| Assertion | ghmcyg | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.1 | |
|
| 2 | ghmcyg.1 | |
|
| 3 | eqid | |
|
| 4 | 1 3 | iscyg | |
| 5 | 4 | simprbi | |
| 6 | eqid | |
|
| 7 | ghmgrp2 | |
|
| 8 | 7 | ad2antrr | |
| 9 | fof | |
|
| 10 | 9 | ad2antlr | |
| 11 | simprl | |
|
| 12 | 10 11 | ffvelcdmd | |
| 13 | simplr | |
|
| 14 | foeq2 | |
|
| 15 | 14 | ad2antll | |
| 16 | 13 15 | mpbird | |
| 17 | foelrn | |
|
| 18 | 16 17 | sylan | |
| 19 | ovex | |
|
| 20 | 19 | rgenw | |
| 21 | oveq1 | |
|
| 22 | 21 | cbvmptv | |
| 23 | fveq2 | |
|
| 24 | 23 | eqeq2d | |
| 25 | 22 24 | rexrnmptw | |
| 26 | 20 25 | ax-mp | |
| 27 | 18 26 | sylib | |
| 28 | simp-4l | |
|
| 29 | simpr | |
|
| 30 | 11 | ad2antrr | |
| 31 | 1 3 6 | ghmmulg | |
| 32 | 28 29 30 31 | syl3anc | |
| 33 | 32 | eqeq2d | |
| 34 | 33 | rexbidva | |
| 35 | 27 34 | mpbid | |
| 36 | 2 6 8 12 35 | iscygd | |
| 37 | 36 | rexlimdvaa | |
| 38 | 5 37 | syl5 | |