Metamath Proof Explorer


Theorem ghmcyg

Description: The image of a cyclic group under a surjective group homomorphism is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses cygctb.1 B = Base G
ghmcyg.1 C = Base H
Assertion ghmcyg F G GrpHom H F : B onto C G CycGrp H CycGrp

Proof

Step Hyp Ref Expression
1 cygctb.1 B = Base G
2 ghmcyg.1 C = Base H
3 eqid G = G
4 1 3 iscyg G CycGrp G Grp x B ran n n G x = B
5 4 simprbi G CycGrp x B ran n n G x = B
6 eqid H = H
7 ghmgrp2 F G GrpHom H H Grp
8 7 ad2antrr F G GrpHom H F : B onto C x B ran n n G x = B H Grp
9 fof F : B onto C F : B C
10 9 ad2antlr F G GrpHom H F : B onto C x B ran n n G x = B F : B C
11 simprl F G GrpHom H F : B onto C x B ran n n G x = B x B
12 10 11 ffvelrnd F G GrpHom H F : B onto C x B ran n n G x = B F x C
13 simplr F G GrpHom H F : B onto C x B ran n n G x = B F : B onto C
14 foeq2 ran n n G x = B F : ran n n G x onto C F : B onto C
15 14 ad2antll F G GrpHom H F : B onto C x B ran n n G x = B F : ran n n G x onto C F : B onto C
16 13 15 mpbird F G GrpHom H F : B onto C x B ran n n G x = B F : ran n n G x onto C
17 foelrn F : ran n n G x onto C y C z ran n n G x y = F z
18 16 17 sylan F G GrpHom H F : B onto C x B ran n n G x = B y C z ran n n G x y = F z
19 ovex m G x V
20 19 rgenw m m G x V
21 oveq1 n = m n G x = m G x
22 21 cbvmptv n n G x = m m G x
23 fveq2 z = m G x F z = F m G x
24 23 eqeq2d z = m G x y = F z y = F m G x
25 22 24 rexrnmptw m m G x V z ran n n G x y = F z m y = F m G x
26 20 25 ax-mp z ran n n G x y = F z m y = F m G x
27 18 26 sylib F G GrpHom H F : B onto C x B ran n n G x = B y C m y = F m G x
28 simp-4l F G GrpHom H F : B onto C x B ran n n G x = B y C m F G GrpHom H
29 simpr F G GrpHom H F : B onto C x B ran n n G x = B y C m m
30 11 ad2antrr F G GrpHom H F : B onto C x B ran n n G x = B y C m x B
31 1 3 6 ghmmulg F G GrpHom H m x B F m G x = m H F x
32 28 29 30 31 syl3anc F G GrpHom H F : B onto C x B ran n n G x = B y C m F m G x = m H F x
33 32 eqeq2d F G GrpHom H F : B onto C x B ran n n G x = B y C m y = F m G x y = m H F x
34 33 rexbidva F G GrpHom H F : B onto C x B ran n n G x = B y C m y = F m G x m y = m H F x
35 27 34 mpbid F G GrpHom H F : B onto C x B ran n n G x = B y C m y = m H F x
36 2 6 8 12 35 iscygd F G GrpHom H F : B onto C x B ran n n G x = B H CycGrp
37 36 rexlimdvaa F G GrpHom H F : B onto C x B ran n n G x = B H CycGrp
38 5 37 syl5 F G GrpHom H F : B onto C G CycGrp H CycGrp