Metamath Proof Explorer


Theorem ghmf

Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypotheses ghmf.x X = Base S
ghmf.y Y = Base T
Assertion ghmf F S GrpHom T F : X Y

Proof

Step Hyp Ref Expression
1 ghmf.x X = Base S
2 ghmf.y Y = Base T
3 eqid + S = + S
4 eqid + T = + T
5 1 2 3 4 isghm F S GrpHom T S Grp T Grp F : X Y y X x X F y + S x = F y + T F x
6 5 simprbi F S GrpHom T F : X Y y X x X F y + S x = F y + T F x
7 6 simpld F S GrpHom T F : X Y