Step |
Hyp |
Ref |
Expression |
1 |
|
f1ghm0to0.a |
|
2 |
|
f1ghm0to0.b |
|
3 |
|
f1ghm0to0.n |
|
4 |
|
f1ghm0to0.0 |
|
5 |
1 2 3 4
|
f1ghm0to0 |
|
6 |
5
|
3expa |
|
7 |
6
|
biimpd |
|
8 |
7
|
ralrimiva |
|
9 |
1 2
|
ghmf |
|
10 |
9
|
adantr |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
1 11 12
|
ghmsub |
|
14 |
13
|
3expb |
|
15 |
14
|
adantlr |
|
16 |
15
|
eqeq1d |
|
17 |
|
fveqeq2 |
|
18 |
|
eqeq1 |
|
19 |
17 18
|
imbi12d |
|
20 |
|
simplr |
|
21 |
|
ghmgrp1 |
|
22 |
21
|
adantr |
|
23 |
1 11
|
grpsubcl |
|
24 |
23
|
3expb |
|
25 |
22 24
|
sylan |
|
26 |
19 20 25
|
rspcdva |
|
27 |
16 26
|
sylbird |
|
28 |
|
ghmgrp2 |
|
29 |
28
|
ad2antrr |
|
30 |
9
|
ad2antrr |
|
31 |
|
simprl |
|
32 |
30 31
|
ffvelcdmd |
|
33 |
|
simprr |
|
34 |
30 33
|
ffvelcdmd |
|
35 |
2 4 12
|
grpsubeq0 |
|
36 |
29 32 34 35
|
syl3anc |
|
37 |
21
|
ad2antrr |
|
38 |
1 3 11
|
grpsubeq0 |
|
39 |
37 31 33 38
|
syl3anc |
|
40 |
27 36 39
|
3imtr3d |
|
41 |
40
|
ralrimivva |
|
42 |
|
dff13 |
|
43 |
10 41 42
|
sylanbrc |
|
44 |
8 43
|
impbida |
|