Metamath Proof Explorer


Theorem ghmf1

Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008) (Revised by Mario Carneiro, 13-Jan-2015) (Proof shortened by AV, 4-Apr-2025)

Ref Expression
Hypotheses f1ghm0to0.a A = Base R
f1ghm0to0.b B = Base S
f1ghm0to0.n N = 0 R
f1ghm0to0.0 0 ˙ = 0 S
Assertion ghmf1 F R GrpHom S F : A 1-1 B x A F x = 0 ˙ x = N

Proof

Step Hyp Ref Expression
1 f1ghm0to0.a A = Base R
2 f1ghm0to0.b B = Base S
3 f1ghm0to0.n N = 0 R
4 f1ghm0to0.0 0 ˙ = 0 S
5 1 2 3 4 f1ghm0to0 F R GrpHom S F : A 1-1 B x A F x = 0 ˙ x = N
6 5 3expa F R GrpHom S F : A 1-1 B x A F x = 0 ˙ x = N
7 6 biimpd F R GrpHom S F : A 1-1 B x A F x = 0 ˙ x = N
8 7 ralrimiva F R GrpHom S F : A 1-1 B x A F x = 0 ˙ x = N
9 1 2 ghmf F R GrpHom S F : A B
10 9 adantr F R GrpHom S x A F x = 0 ˙ x = N F : A B
11 eqid - R = - R
12 eqid - S = - S
13 1 11 12 ghmsub F R GrpHom S y A z A F y - R z = F y - S F z
14 13 3expb F R GrpHom S y A z A F y - R z = F y - S F z
15 14 adantlr F R GrpHom S x A F x = 0 ˙ x = N y A z A F y - R z = F y - S F z
16 15 eqeq1d F R GrpHom S x A F x = 0 ˙ x = N y A z A F y - R z = 0 ˙ F y - S F z = 0 ˙
17 fveqeq2 x = y - R z F x = 0 ˙ F y - R z = 0 ˙
18 eqeq1 x = y - R z x = N y - R z = N
19 17 18 imbi12d x = y - R z F x = 0 ˙ x = N F y - R z = 0 ˙ y - R z = N
20 simplr F R GrpHom S x A F x = 0 ˙ x = N y A z A x A F x = 0 ˙ x = N
21 ghmgrp1 F R GrpHom S R Grp
22 21 adantr F R GrpHom S x A F x = 0 ˙ x = N R Grp
23 1 11 grpsubcl R Grp y A z A y - R z A
24 23 3expb R Grp y A z A y - R z A
25 22 24 sylan F R GrpHom S x A F x = 0 ˙ x = N y A z A y - R z A
26 19 20 25 rspcdva F R GrpHom S x A F x = 0 ˙ x = N y A z A F y - R z = 0 ˙ y - R z = N
27 16 26 sylbird F R GrpHom S x A F x = 0 ˙ x = N y A z A F y - S F z = 0 ˙ y - R z = N
28 ghmgrp2 F R GrpHom S S Grp
29 28 ad2antrr F R GrpHom S x A F x = 0 ˙ x = N y A z A S Grp
30 9 ad2antrr F R GrpHom S x A F x = 0 ˙ x = N y A z A F : A B
31 simprl F R GrpHom S x A F x = 0 ˙ x = N y A z A y A
32 30 31 ffvelcdmd F R GrpHom S x A F x = 0 ˙ x = N y A z A F y B
33 simprr F R GrpHom S x A F x = 0 ˙ x = N y A z A z A
34 30 33 ffvelcdmd F R GrpHom S x A F x = 0 ˙ x = N y A z A F z B
35 2 4 12 grpsubeq0 S Grp F y B F z B F y - S F z = 0 ˙ F y = F z
36 29 32 34 35 syl3anc F R GrpHom S x A F x = 0 ˙ x = N y A z A F y - S F z = 0 ˙ F y = F z
37 21 ad2antrr F R GrpHom S x A F x = 0 ˙ x = N y A z A R Grp
38 1 3 11 grpsubeq0 R Grp y A z A y - R z = N y = z
39 37 31 33 38 syl3anc F R GrpHom S x A F x = 0 ˙ x = N y A z A y - R z = N y = z
40 27 36 39 3imtr3d F R GrpHom S x A F x = 0 ˙ x = N y A z A F y = F z y = z
41 40 ralrimivva F R GrpHom S x A F x = 0 ˙ x = N y A z A F y = F z y = z
42 dff13 F : A 1-1 B F : A B y A z A F y = F z y = z
43 10 41 42 sylanbrc F R GrpHom S x A F x = 0 ˙ x = N F : A 1-1 B
44 8 43 impbida F R GrpHom S F : A 1-1 B x A F x = 0 ˙ x = N