| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ghmf1o.x |
|
| 2 |
|
ghmf1o.y |
|
| 3 |
|
ghmgrp2 |
|
| 4 |
|
ghmgrp1 |
|
| 5 |
3 4
|
jca |
|
| 6 |
5
|
adantr |
|
| 7 |
|
f1ocnv |
|
| 8 |
7
|
adantl |
|
| 9 |
|
f1of |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
simpll |
|
| 12 |
10
|
adantr |
|
| 13 |
|
simprl |
|
| 14 |
12 13
|
ffvelcdmd |
|
| 15 |
|
simprr |
|
| 16 |
12 15
|
ffvelcdmd |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
1 17 18
|
ghmlin |
|
| 20 |
11 14 16 19
|
syl3anc |
|
| 21 |
|
simplr |
|
| 22 |
|
f1ocnvfv2 |
|
| 23 |
21 13 22
|
syl2anc |
|
| 24 |
|
f1ocnvfv2 |
|
| 25 |
21 15 24
|
syl2anc |
|
| 26 |
23 25
|
oveq12d |
|
| 27 |
20 26
|
eqtrd |
|
| 28 |
11 4
|
syl |
|
| 29 |
1 17
|
grpcl |
|
| 30 |
28 14 16 29
|
syl3anc |
|
| 31 |
|
f1ocnvfv |
|
| 32 |
21 30 31
|
syl2anc |
|
| 33 |
27 32
|
mpd |
|
| 34 |
33
|
ralrimivva |
|
| 35 |
10 34
|
jca |
|
| 36 |
2 1 18 17
|
isghm |
|
| 37 |
6 35 36
|
sylanbrc |
|
| 38 |
1 2
|
ghmf |
|
| 39 |
38
|
adantr |
|
| 40 |
39
|
ffnd |
|
| 41 |
2 1
|
ghmf |
|
| 42 |
41
|
adantl |
|
| 43 |
42
|
ffnd |
|
| 44 |
|
dff1o4 |
|
| 45 |
40 43 44
|
sylanbrc |
|
| 46 |
37 45
|
impbida |
|