Step |
Hyp |
Ref |
Expression |
1 |
|
ghmf1o.x |
|
2 |
|
ghmf1o.y |
|
3 |
|
ghmgrp2 |
|
4 |
|
ghmgrp1 |
|
5 |
3 4
|
jca |
|
6 |
5
|
adantr |
|
7 |
|
f1ocnv |
|
8 |
7
|
adantl |
|
9 |
|
f1of |
|
10 |
8 9
|
syl |
|
11 |
|
simpll |
|
12 |
10
|
adantr |
|
13 |
|
simprl |
|
14 |
12 13
|
ffvelrnd |
|
15 |
|
simprr |
|
16 |
12 15
|
ffvelrnd |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
1 17 18
|
ghmlin |
|
20 |
11 14 16 19
|
syl3anc |
|
21 |
|
simplr |
|
22 |
|
f1ocnvfv2 |
|
23 |
21 13 22
|
syl2anc |
|
24 |
|
f1ocnvfv2 |
|
25 |
21 15 24
|
syl2anc |
|
26 |
23 25
|
oveq12d |
|
27 |
20 26
|
eqtrd |
|
28 |
11 4
|
syl |
|
29 |
1 17
|
grpcl |
|
30 |
28 14 16 29
|
syl3anc |
|
31 |
|
f1ocnvfv |
|
32 |
21 30 31
|
syl2anc |
|
33 |
27 32
|
mpd |
|
34 |
33
|
ralrimivva |
|
35 |
10 34
|
jca |
|
36 |
2 1 18 17
|
isghm |
|
37 |
6 35 36
|
sylanbrc |
|
38 |
1 2
|
ghmf |
|
39 |
38
|
adantr |
|
40 |
39
|
ffnd |
|
41 |
2 1
|
ghmf |
|
42 |
41
|
adantl |
|
43 |
42
|
ffnd |
|
44 |
|
dff1o4 |
|
45 |
40 43 44
|
sylanbrc |
|
46 |
37 45
|
impbida |
|