Metamath Proof Explorer


Theorem ghmgrp

Description: The image of a group G under a group homomorphism F is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator O in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 25-Jan-2020)

Ref Expression
Hypotheses ghmgrp.f φ x X y X F x + ˙ y = F x ˙ F y
ghmgrp.x X = Base G
ghmgrp.y Y = Base H
ghmgrp.p + ˙ = + G
ghmgrp.q ˙ = + H
ghmgrp.1 φ F : X onto Y
ghmgrp.3 φ G Grp
Assertion ghmgrp φ H Grp

Proof

Step Hyp Ref Expression
1 ghmgrp.f φ x X y X F x + ˙ y = F x ˙ F y
2 ghmgrp.x X = Base G
3 ghmgrp.y Y = Base H
4 ghmgrp.p + ˙ = + G
5 ghmgrp.q ˙ = + H
6 ghmgrp.1 φ F : X onto Y
7 ghmgrp.3 φ G Grp
8 7 grpmndd φ G Mnd
9 1 2 3 4 5 6 8 mhmmnd φ H Mnd
10 fof F : X onto Y F : X Y
11 6 10 syl φ F : X Y
12 11 ad3antrrr φ a Y i X F i = a F : X Y
13 7 ad3antrrr φ a Y i X F i = a G Grp
14 simplr φ a Y i X F i = a i X
15 eqid inv g G = inv g G
16 2 15 grpinvcl G Grp i X inv g G i X
17 13 14 16 syl2anc φ a Y i X F i = a inv g G i X
18 12 17 ffvelrnd φ a Y i X F i = a F inv g G i Y
19 1 3adant1r φ i X x X y X F x + ˙ y = F x ˙ F y
20 7 16 sylan φ i X inv g G i X
21 simpr φ i X i X
22 19 20 21 mhmlem φ i X F inv g G i + ˙ i = F inv g G i ˙ F i
23 22 ad4ant13 φ a Y i X F i = a F inv g G i + ˙ i = F inv g G i ˙ F i
24 eqid 0 G = 0 G
25 2 4 24 15 grplinv G Grp i X inv g G i + ˙ i = 0 G
26 25 fveq2d G Grp i X F inv g G i + ˙ i = F 0 G
27 13 14 26 syl2anc φ a Y i X F i = a F inv g G i + ˙ i = F 0 G
28 1 2 3 4 5 6 8 24 mhmid φ F 0 G = 0 H
29 28 ad3antrrr φ a Y i X F i = a F 0 G = 0 H
30 27 29 eqtrd φ a Y i X F i = a F inv g G i + ˙ i = 0 H
31 simpr φ a Y i X F i = a F i = a
32 31 oveq2d φ a Y i X F i = a F inv g G i ˙ F i = F inv g G i ˙ a
33 23 30 32 3eqtr3rd φ a Y i X F i = a F inv g G i ˙ a = 0 H
34 oveq1 f = F inv g G i f ˙ a = F inv g G i ˙ a
35 34 eqeq1d f = F inv g G i f ˙ a = 0 H F inv g G i ˙ a = 0 H
36 35 rspcev F inv g G i Y F inv g G i ˙ a = 0 H f Y f ˙ a = 0 H
37 18 33 36 syl2anc φ a Y i X F i = a f Y f ˙ a = 0 H
38 foelrni F : X onto Y a Y i X F i = a
39 6 38 sylan φ a Y i X F i = a
40 37 39 r19.29a φ a Y f Y f ˙ a = 0 H
41 40 ralrimiva φ a Y f Y f ˙ a = 0 H
42 eqid 0 H = 0 H
43 3 5 42 isgrp H Grp H Mnd a Y f Y f ˙ a = 0 H
44 9 41 43 sylanbrc φ H Grp