Metamath Proof Explorer


Theorem ghmgrp2

Description: A group homomorphism is only defined when the codomain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion ghmgrp2 F S GrpHom T T Grp

Proof

Step Hyp Ref Expression
1 eqid Base S = Base S
2 eqid Base T = Base T
3 eqid + S = + S
4 eqid + T = + T
5 1 2 3 4 isghm F S GrpHom T S Grp T Grp F : Base S Base T y Base S x Base S F y + S x = F y + T F x
6 5 simplbi F S GrpHom T S Grp T Grp
7 6 simprd F S GrpHom T T Grp