Metamath Proof Explorer


Theorem ghmid

Description: A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypotheses ghmid.y Y = 0 S
ghmid.z 0 ˙ = 0 T
Assertion ghmid F S GrpHom T F Y = 0 ˙

Proof

Step Hyp Ref Expression
1 ghmid.y Y = 0 S
2 ghmid.z 0 ˙ = 0 T
3 ghmgrp1 F S GrpHom T S Grp
4 eqid Base S = Base S
5 4 1 grpidcl S Grp Y Base S
6 3 5 syl F S GrpHom T Y Base S
7 eqid + S = + S
8 eqid + T = + T
9 4 7 8 ghmlin F S GrpHom T Y Base S Y Base S F Y + S Y = F Y + T F Y
10 6 6 9 mpd3an23 F S GrpHom T F Y + S Y = F Y + T F Y
11 4 7 1 grplid S Grp Y Base S Y + S Y = Y
12 3 6 11 syl2anc F S GrpHom T Y + S Y = Y
13 12 fveq2d F S GrpHom T F Y + S Y = F Y
14 10 13 eqtr3d F S GrpHom T F Y + T F Y = F Y
15 ghmgrp2 F S GrpHom T T Grp
16 eqid Base T = Base T
17 4 16 ghmf F S GrpHom T F : Base S Base T
18 17 6 ffvelrnd F S GrpHom T F Y Base T
19 16 8 2 grpid T Grp F Y Base T F Y + T F Y = F Y 0 ˙ = F Y
20 15 18 19 syl2anc F S GrpHom T F Y + T F Y = F Y 0 ˙ = F Y
21 14 20 mpbid F S GrpHom T 0 ˙ = F Y
22 21 eqcomd F S GrpHom T F Y = 0 ˙