Metamath Proof Explorer


Theorem ghminv

Description: A homomorphism of groups preserves inverses. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypotheses ghminv.b B = Base S
ghminv.y M = inv g S
ghminv.z N = inv g T
Assertion ghminv F S GrpHom T X B F M X = N F X

Proof

Step Hyp Ref Expression
1 ghminv.b B = Base S
2 ghminv.y M = inv g S
3 ghminv.z N = inv g T
4 ghmgrp1 F S GrpHom T S Grp
5 eqid + S = + S
6 eqid 0 S = 0 S
7 1 5 6 2 grprinv S Grp X B X + S M X = 0 S
8 4 7 sylan F S GrpHom T X B X + S M X = 0 S
9 8 fveq2d F S GrpHom T X B F X + S M X = F 0 S
10 1 2 grpinvcl S Grp X B M X B
11 4 10 sylan F S GrpHom T X B M X B
12 eqid + T = + T
13 1 5 12 ghmlin F S GrpHom T X B M X B F X + S M X = F X + T F M X
14 11 13 mpd3an3 F S GrpHom T X B F X + S M X = F X + T F M X
15 eqid 0 T = 0 T
16 6 15 ghmid F S GrpHom T F 0 S = 0 T
17 16 adantr F S GrpHom T X B F 0 S = 0 T
18 9 14 17 3eqtr3d F S GrpHom T X B F X + T F M X = 0 T
19 ghmgrp2 F S GrpHom T T Grp
20 19 adantr F S GrpHom T X B T Grp
21 eqid Base T = Base T
22 1 21 ghmf F S GrpHom T F : B Base T
23 22 ffvelrnda F S GrpHom T X B F X Base T
24 22 adantr F S GrpHom T X B F : B Base T
25 24 11 ffvelrnd F S GrpHom T X B F M X Base T
26 21 12 15 3 grpinvid1 T Grp F X Base T F M X Base T N F X = F M X F X + T F M X = 0 T
27 20 23 25 26 syl3anc F S GrpHom T X B N F X = F M X F X + T F M X = 0 T
28 18 27 mpbird F S GrpHom T X B N F X = F M X
29 28 eqcomd F S GrpHom T X B F M X = N F X