Metamath Proof Explorer


Theorem ghmker

Description: The kernel of a homomorphism is a normal subgroup. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis ghmker.1 0 ˙ = 0 T
Assertion ghmker F S GrpHom T F -1 0 ˙ NrmSGrp S

Proof

Step Hyp Ref Expression
1 ghmker.1 0 ˙ = 0 T
2 ghmgrp2 F S GrpHom T T Grp
3 1 0nsg T Grp 0 ˙ NrmSGrp T
4 2 3 syl F S GrpHom T 0 ˙ NrmSGrp T
5 ghmnsgpreima F S GrpHom T 0 ˙ NrmSGrp T F -1 0 ˙ NrmSGrp S
6 4 5 mpdan F S GrpHom T F -1 0 ˙ NrmSGrp S