Metamath Proof Explorer


Theorem ghmmhm

Description: A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Assertion ghmmhm F S GrpHom T F S MndHom T

Proof

Step Hyp Ref Expression
1 ghmgrp1 F S GrpHom T S Grp
2 1 grpmndd F S GrpHom T S Mnd
3 ghmgrp2 F S GrpHom T T Grp
4 3 grpmndd F S GrpHom T T Mnd
5 eqid Base S = Base S
6 eqid Base T = Base T
7 5 6 ghmf F S GrpHom T F : Base S Base T
8 eqid + S = + S
9 eqid + T = + T
10 5 8 9 ghmlin F S GrpHom T x Base S y Base S F x + S y = F x + T F y
11 10 3expb F S GrpHom T x Base S y Base S F x + S y = F x + T F y
12 11 ralrimivva F S GrpHom T x Base S y Base S F x + S y = F x + T F y
13 eqid 0 S = 0 S
14 eqid 0 T = 0 T
15 13 14 ghmid F S GrpHom T F 0 S = 0 T
16 7 12 15 3jca F S GrpHom T F : Base S Base T x Base S y Base S F x + S y = F x + T F y F 0 S = 0 T
17 5 6 8 9 13 14 ismhm F S MndHom T S Mnd T Mnd F : Base S Base T x Base S y Base S F x + S y = F x + T F y F 0 S = 0 T
18 2 4 16 17 syl21anbrc F S GrpHom T F S MndHom T